A Decomposition Strategy Based Trusted Computing Method for Cooperative Control Problem Faced with Communication Constraints

  • Shieh-Shing Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4610)


In this paper, we propose a decomposition strategy based computing method to solve a cooperative control problem. The test results show that the proposed method has computational efficiency with respect to the conventional approach of the centralized Newton method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellingham, J., Tillerson, M., Richards, A.: How, Multi-task allocation and path planning for cooperating UAVs. In: Cooperative Control: Models, Applications Algorithms. ch. 2, Kluwer, Boston (2003)Google Scholar
  2. 2.
    Inalhan, G., Stipanovic, D.M., Tomlin, C.J.: Decentralized optimization with application to multiple aircraft coordination. In: Proc. IEEE Conf. Decision Control, Las Vegas, NV, pp. 1147–1155 (2002)Google Scholar
  3. 3.
    Burchett, H., Happ, H., Vierath, D.R.: Quadratically Convergent Optimal Power Flow. IEEE Trans. Power Appar. Syst. PAS-104(11), 3267–3275 (1985)Google Scholar
  4. 4.
    Giras, T.C., Talukdar, S.N.: Quasi-Newton Method for Optimal Power Flows. Int. J. Electr. Power Energy Syst. 3(2), 59–64 (1981)CrossRefGoogle Scholar
  5. 5.
    Sun, D., Ashly, B., Brewer, B.: Optimal Power Flow by Newton Approach. IEEE Trans. Power Appar. Syst. PAS-103, 2864–2880 (1984)CrossRefGoogle Scholar
  6. 6.
    Monticoll, A., Liu, W.: Adaptive movement penalty method for Newton Optimal Power flow. IEEE Trans. on Power Syst. 7, 334–340 (1992)CrossRefGoogle Scholar
  7. 7.
    Leventhal, T., Nemhauser, G., Trotter, JR.: A Column Generation Algorithm for Optimal Traffic Assigment. Trans. Sci. 7(2), 168–176 (1973)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zecevic, A.I., Siljak, D.D.: A block-parallel Newton method via overlapping epsilon decompositions. SIAM Journal on Matrix Algebra and Applications (1994)Google Scholar
  9. 9.
    Sezer, M.E., Siljak, D.D.: Nested epsilon decompositions and clustering of complex system. Automatica 22, 321–331 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gould, R.: Graph Theory, Benjamin/Cummings, Menlo Park, CA (1988)Google Scholar
  11. 11.
    Luenberger, D.: Linear and nonlinear programming, 2nd edn. Addison-Wesley, London (1984)zbMATHGoogle Scholar
  12. 12.
    Lin, C., Lin, S.: A new dual-type method used in solving optimal power flow problems. IEEE Trans. on Power Syst. 12(4), 1667–1675 (1997)CrossRefGoogle Scholar
  13. 13.
    Lin, S., Lin, C.: A computationally efficient method for nonlinear multicommodity network flow problem. Network 225–244 (1997)Google Scholar
  14. 14.
    Lin, S.-Y., Lin, S.-S.: A parallel block scaled gradient method with decentralized step-size for block additive unconstrained optimization problems of large distributed systems. Asian Journal of Control 5(1), 104–115 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Shieh-Shing Lin
    • 1
  1. 1.Department of Electrical Engineering, Saint John’s University, 499, Sec. 4, Tam King Road, Tamsui, TaipeiTaiwan

Personalised recommendations