Advertisement

SPA Countermeasure Based on Unsigned Left-to-Right Recodings

  • Sung-Kyoung Kim
  • Dong-Guk Han
  • Ho Won Kim
  • Kyo IL Chung
  • Jongin Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4610)

Abstract

Vuillaume-Okeya presented unsigned recoding methods for protecting modular exponentiations against side channel attacks, which are suitable for tamper-resistant implementations of RSA or DSA which does not benefit from cheap inversions.

This paper describes new recoding methods for producing SPA-resistant unsigned representations which are scanned from left to right (i.e., from the most significant digit to the least significant digit) contrary to the previous ones. Our contributions are as follows; (1) SPA-resistant unsigned left-to-right recoding with general width-w, (2) special case when w = 1, i.e., unsigned binary representation using the digit set {1,2}. These methods reduce the memory required to perform the modular exponentiation g k .

Keywords

Elliptic Curve Elliptic Curf Elliptic Curve Cryptography Side Channel Attack Modular Exponentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aydos, M., Yank, T., Koc, C.K.: High-speed implementation of an ECC-based wireless authentication protocol on an ARM microprocessor. IEE Proceedings Communications 148, 273–279 (2001)CrossRefGoogle Scholar
  2. 2.
    Barreto, P., Galbraith, S., Eigeartaigh, C., Scott, M.: Efficient Pairing Computation on Supersingular Abelian Varieties, Cryptology ePrint Archive: Report 2004/375 (2004)Google Scholar
  3. 3.
    Bertoni, G., Guajardo, J., Kumar, S., Orlando, G., Paar, C., Wollinger, T.: Efficient GF(p m) Arithmetic Architectures for Cryptographic Applications. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 158–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Coron, J.S.: Resistance against diifferential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Hedabou, M., Pinel, P., Bebeteau, L.: Countermeasures for Preventing Comb Method Against SCA Attacks. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 85–96. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Harrison, K., Page, D., Smart, N.: Software Implementation of Finite Fields of Characteristic Three. LMS Journal of Computation and Mathematics 5, 181–193 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 412–420. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Joye, M., Tymen, C.: Protections against diffierential analysis for elliptic curve cryptography: an algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 386–400. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Joye, M., Yen, S.: Optimal Left-to-Right Binary Signed-Digit Recoding. IEEE Trans. Computers 49, 740–748 (2000)CrossRefGoogle Scholar
  10. 10.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Lauter, K.: The advantages of elliptic curve cryptography for wireless security. IEEE Wireless Communications 11, 62–67 (2004)CrossRefGoogle Scholar
  14. 14.
    Lopez, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Lim, C.: A new method for securing elliptic scalar multiplication against side channel attacks. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 289–300. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  17. 17.
    Möller, B.: Securing Elliptic Curve Point Multiplication against Side-Channel Attacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T.: Signed Binary Representations Revisited. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 123–139. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Okeya, K., Takagi, T.: The width-wNAF method provids small memory and fast elliptic scalar multiplications secure against side channel attacks. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 328–343. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Page, D., Smart, N.: Hardware Implementation of Finite Fields of Characteristic Three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 529–539. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Ruan, X., Katti, R.: Left-to-Right Optimal Signed-Binary Representation of a Pair of Integers. IEEE Trans. Computers 54, 124–131 (2005)CrossRefGoogle Scholar
  22. 22.
    Shin, J.H., Park, D.J., Lee, P.J.: DPA Attack on the Improved Ha-Moon Algorithm. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 283–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Theriault, N.: SPA Resistant Left-to-Right Integer Recodings. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 345–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Vuillaume, C., Okeya, K.: Flexible Exponentiation with Resistance to Side Channel Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 268–283. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sung-Kyoung Kim
    • 1
  • Dong-Guk Han
    • 2
  • Ho Won Kim
    • 2
  • Kyo IL Chung
    • 2
  • Jongin Lim
    • 1
  1. 1.Graduate School of Information Management and Security, Korea University 
  2. 2.Electronics and Telecommunications Research Institute(ETRI) 

Personalised recommendations