Skip to main content

Dimension, Halfspaces, and the Density of Hard Sets

  • Conference paper
Computing and Combinatorics (COCOON 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4598))

Included in the following conference series:

Abstract

We use the connection between resource-bounded dimension and the online mistake-bound model of learning to show that the following classes have polynomial-time dimension zero.

  1. 1

    The class of problems which reduce to nondense sets via a majority reduction.

  2. 1

    The class of problems which reduce to nondense sets via an iterated reduction that composes a bounded-query truth-table reduction with a conjunctive reduction.

As corollary, all sets which are hard for exponential time under these reductions are exponentially dense. The first item subsumes two previous results and the second item answers a question of Lutz and Mayordomo. Our proofs use Littlestone’s Winnow2 algorithm for learning r-of-k threshold functions and Maass and Turán’s algorithm for learning halfspaces.

This research was supported in part by NSF grant 0515313.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., Arvind, V.: Geometric sets of low information content. Theoretical Computer Science 158(1–2), 193–219 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arvind, V., Han, Y., Hemachandra, L., Köbler, J., Lozano, A., Mundhenk, M., Ogiwara, A., Schöning, U., Silvestri, R., Thierauf, T.: Reductions to sets of low information content. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research, pp. 1–45. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM Journal on Computing (to appear)

    Google Scholar 

  4. Fu, B.: With quasilinear queries EXP is not polynomial time Turing reducible to sparse sets. SIAM Journal on Computing 24(5), 1082–1090 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fu, B.: Personal communication (2006)

    Google Scholar 

  6. Hitchcock, J.M.: Online learning and resource-bounded dimension: Winnow yields new lower bounds for hard sets. SIAM Journal on Computing 36(6), 1696–1708 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: The fractal geometry of complexity classes. SIGACT News 36(3), 24–38 (2005)

    Article  Google Scholar 

  8. Lindner, W., Schuler, R., Watanabe, O.: Resource-bounded measure and learnability. Theory of Computing Systems 33(2), 151–170 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 2(4), 285–318 (1987)

    Google Scholar 

  10. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–254. Springer, Heidelberg (1997)

    Google Scholar 

  12. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32(5), 1236–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lutz, J.H., Mayordomo, E.: Measure, stochasticity, and the density of hard languages. SIAM Journal on Computing 23(4), 762–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lutz, J.H., Mayordomo, E.: Twelve problems in resource-bounded measure. Bulletin of the European Association for Theoretical Computer Science 68, 64–80 (1999). Current Trends in Theoretical Computer Science: Entering the 21st Century, pp. 83–101. World Scientific Publishing, Singapore (2001)

    Google Scholar 

  15. Lutz, J.H., Zhao, Y.: The density of weakly complete problems under adaptive reductions. SIAM Journal on Computing 30(4), 1197–1210 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Maass, W., Turán, G.: How fast can a threshold gate learn? In: Hanson, S.J., Drastal, G.A., Rivest, R.L. (eds.) Computational Learning Theory and Natural Learning Systems. Constraints and Prospects, vol. I, pp. 381–414. MIT Press, Cambridge (1994)

    Google Scholar 

  17. Vaidya, P.M.: A new algorithm for minimizing convex functions over convex sets. In: Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, pp. 338–349. IEEE Computer Society Press, Los Alamitos (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guohui Lin

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harkins, R.C., Hitchcock, J.M. (2007). Dimension, Halfspaces, and the Density of Hard Sets. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73545-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73544-1

  • Online ISBN: 978-3-540-73545-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics