Skip to main content

Assessment of Different SPIV Processing Methods for an Application to Near-Wall Turbulence

  • Chapter
Particle Image Velocimetry

Part of the book series: Topics in Applied Physics ((TAP,volume 112))

Abstract

An experiment has been performed in a large wind tunnel with the objectives to record 2D3C velocity fields of a fully developed turbulent boundary layer along a flat plate by means of stereoscopic PIV (SPIV) and to study the characteristics of this turbulence. The present study starts from determining the suitable method to process the database that was recorded with the stereoscopic PIV system. It suggests that the Soloff method with 3 calibration planes and integer shift is the best choice. Then, by using this method the analysis of the mean streamwise velocity, velocity fluctuations, Reynolds shear stress, spectrum, probability density function (PDF) as well as skewness and flatness, was performed and compared with values from hot-wire anemometry (HWA) and direct numerical simulation (DNS). The comparison indicates that SPIV is a well-qualified method to investigate near-wall turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Adrian: Particle-imaging techniques for experimental fluid mechanics, Ann. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  ADS  Google Scholar 

  • J. Westerweel: Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8, 1379–1392 (1997)

    Article  ADS  Google Scholar 

  • M. Raffel, M. Gharib, O. Ronneberger, J. Kompenhans: Feasibility study of three-dimensional {PIV} by correlating images of particles within parallel light sheets, Exp Fluids. 19, 69–77 (1995)

    Article  Google Scholar 

  • J. Foucaut, J. Carlier, M. Stanislas: {PIV} optimization for the study of turbulent flow using spectral analysis, Meas. Sci. Technol. 15, 1046–1058 (2004)

    Article  ADS  Google Scholar 

  • L. Lourenco: Some Comments on Particle Image Displacement Velocimetry, Von Karmann Institute for Fluid Dynamics, Lecture Series 1988-06 (Von Karmann Institute for Fluid Dynamics 1988)

    Google Scholar 

  • A. Prasad, R. Adrian: Stereoscopic particle image velocimetry applied to liquid flows, Exp. Fluids 15, 49–60 (1993)

    Article  Google Scholar 

  • S. Soloff, R. Adrian, Z. Liu: Distortion compensation for generalized stereoscopic particle image velocimetry, Meas. Sci. Technol. 8, 1441–1454 (1997)

    Article  ADS  Google Scholar 

  • C. Willert: Stereoscopic digital particle image velocimetry for applications in wind tunnel flows, Meas. Sci. Technol. 8, 1465–1479 (1997)

    Article  ADS  Google Scholar 

  • J. Westerweel, J. van Oord: Stereoscopic {{PIV}} measurements in a turbulent boundary layer, in EURO{PIV}: Progress Towards Industrial Application (Kluwer, Dordrecht 2000) pp. 459–478

    Google Scholar 

  • S. Coudert, J. Sch{ö}n: Back projection algorithm with misalignment corrections for {2D3C} stereoscopic {{PIV}}, Meas. Sci. Technol. 12, 1371–1381 (2001)

    Article  ADS  Google Scholar 

  • N. P\'erenne, J. Foucaut, J. Savatier: Study of the accuracy of different stereoscopic reconstruction algorithms, in M. Stanislas, J. Westerweel, J. Kompenhans (Eds.): Proceeding of the EURO{PIV} 2 Workshop on Particle Image Velocimetry: Recent Improvements (Springer, Berlin, Heidelberg 2004) pp. 375–390

    Google Scholar 

  • B. Wieneke: Stereo-{PIV} using self-calibration on particle images, Exp. Fluids 39, 267–280 (2005)

    Article  Google Scholar 

  • R. Fei, W. Merzkirch: Investigations of the measurement accuracy of stereo particle image velocimetry, Exp. Fluids 37, 559–565 (2004)

    Article  Google Scholar 

  • N. Lawson, J. Wu: Three-dimensional particle image velocimety experimental error analysis of digital angular stereoscopic system, Meas. Sci. Technol. 8, 1455–1464 (1997)

    Article  ADS  Google Scholar 

  • J. Carlier, M. Stanislas: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry, J. Fluid Mech. 535, 143–188 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • T. Ursenbacher: Traitement de v\'elocim\'etrie par images digitales de particules par une technique robuste de distortion d'images, Ph.D. thesis, Ecole Polytechnique de Lausanne (2000)

    Google Scholar 

  • F. Scarano, R. Riethmuller: Advances in iterative multi-grid {{PIV}} image processing, Exp. Fluids [Suppl.], S51–S60 (2000)

    Article  Google Scholar 

  • J. Foucaut, B. Miliat, N. P\'erenne, M. Stanislas: Characterization of Different {PIV} Algorithms Using the EURO{PIV} Synthetic Image Generator and Real Images from a Turbulent Boundary Layer (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  • R. Keane, R. Adrian: Optimisation of particle image velocimeters-part {I} double pulsed systems, Meas. Sci. Technol. 1, 1202–1215 (1990)

    Article  ADS  Google Scholar 

  • E. R. van Driest: On turbulent flow near a wall, J. Aero. Sci. 23, 1007–1011 (1956)

    Google Scholar 

  • C. Willert: Prososal for net{CDF} (re)implementation for use with planar velocimetry data, in M. Stanislas, J. Westerweel, J. Kompenhans (Eds.): Proceeding of the EURO{PIV} 2 Workshop on Particle Image Velocimetry: Recent Improvements (2004) pp. 251–262

    Google Scholar 

  • P. Spalart: Direct simulation of a turbulent boundary layer up to { Re}_þeta = 1410, J. Fluid Mech. 1878, 61–98 (1988)

    Article  ADS  Google Scholar 

  • J. O. Hinze: Turbulence, Series in Mechanical Engineering (McGraw-Hill 1975)

    Google Scholar 

  • C. Willert, M. Gharib: Digital particle image velocimetry, Exp. Fluids 10, 181–193 (1991)

    Article  Google Scholar 

  • H. Fernholz, P. Finley: The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data, Prog. Aerospace Sci. 32, 245–311 (1996)

    Article  ADS  Google Scholar 

  • H. Ueda, J. Hinze: Fine-structure turbulence in the wall region of a turbulent boundary layer, J. Fluid Mech. 61, 125–143 (1975)

    Article  ADS  Google Scholar 

  • P. Vukoslavcevic, J. Wallace, J. Balint: The velocity and vorticity vector fields of a turbulent boundary layer, J. Fluid Mech. 228, 25–51 (1991)

    ADS  Google Scholar 

  • D. Calluaud, L. David: {3D {PIV}} measurements of the flow around a surface-mounted block, Exp. Fluids 36, 53–61 (2004)

    Article  Google Scholar 

  • F. Scarano, L. David, M. Bsibsi, D. Calluaud: S-{PIV} comparative assessment image dewarping+misalignment correction and pinhole+geometric back projection, Exp. Fluids 39, 257–266 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, J., Foucaut, JM., Laval, JP., Pérenne, N., Stanislas, M. (2007). Assessment of Different SPIV Processing Methods for an Application to Near-Wall Turbulence. In: Particle Image Velocimetry. Topics in Applied Physics, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73528-1_10

Download citation

Publish with us

Policies and ethics