• U. Schiewer
Part of the Ecological Studies book series (ECOLSTUD, volume 197)

Due to their geology, Baltic coastal areas are highly diverse. Thus the northern and northeastern Baltic is shaped by rock basement of the Scandinavian plate, whereas moraine landscapes and soft soils are typically found throughout the southern, southwestern and southeastern Baltic. Furthermore, constantly changing conditions occur due to the rising northeastern edge and trailing southern shore, in addition to the successive formation of mature shorelines throughout the south and southeast. This results in at least ten different coastal forms (see Chap. 2 by Schiewer, this volume; Fig. 2.1), which can comprise a variety of soil formations ranging from silt, sand and gravel to various types of hard soil.


Coastal Water Coastal Ecosystem Integrate Coastal Zone Management Submerse Macrophyte Macoma Balthica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–606CrossRefGoogle Scholar
  2. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of the water-column microbes in the sea. Mar Ecol Progr Ser 10:257–263CrossRefGoogle Scholar
  3. Estrum-Yousef S (2001) Untersuchungen zur partikulären organischen Fracht küstennaher Gewässer in der Pommerschen Bucht, südliche Ostsee. Diss. Univ Rostock, RostockGoogle Scholar
  4. European Commission (1999a) European Water Framework Directive. European Commission, BrusselsGoogle Scholar
  5. European Commission (1999b) Toward an European Integrated Coastal Zone Management (ICZM). European Commission, BrusselsGoogle Scholar
  6. Görs S, Schumann R, Rentsch D, Schiewer U, Schlungbaum G (2000) Untersuchungen zum gelöstem und partikulärem organischen Material im Trophiegradienten der Darß-Zingster Boddenkette unter besonderer Berücksichtigung des Aminosäurepools. DGL-Tagungsbericht 1999, pp 394–398Google Scholar
  7. Heissenberger A, Leppard GG, Herndl GJ (1996) Relationship between the intercellular integrity and the morphology of the capsular envelope in attached and free-living marine bacteria. Appl Environ Microbiol 62:4521–4528PubMedGoogle Scholar
  8. Kalbe L (1996) Zur Stabilität von limnischen Ökosysteme. Limnologica 26:281–291Google Scholar
  9. Klug H (1985) Küstenformen der Ostsee. In: Newig J, Theede H (eds) Die Ostsee: Natur und Kulturraum. Heide, Husum, pp 70–78Google Scholar
  10. Kube J (1996) Spatial and temporal variations in the population structure of the soft-shell clam, Mya arenia, in the Pomeranian Bay (Southern Baltic Sea). J Sea Res 35:335–344CrossRefGoogle Scholar
  11. Lampe R (1996) Küstentypen. In: Rheinheimer G (ed) Meereskunde der Ostsee, 2nd edn, Springer, Berlin, Heidelberg, pp 17–25Google Scholar
  12. Lappalainen A (2002) The effects of recent eutrophication on freshwater fish communities and fishery on the northern coast of the Gulf of Finland, Baltic Sea. PhD thesis, University of HelsinkiGoogle Scholar
  13. Leppäkoski E (2002) Harmful non-native species in the Baltic Sea–an ignored problem. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems: structure, function and management. Springer, Berlin, pp 253–275Google Scholar
  14. Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2:151–163CrossRefGoogle Scholar
  15. Maestrini S, Granéli E (1991) Environmental conditions and ecophysiological mechanisms which led to the 1988 Chrysochromulina polylepis bloom and hypothesis. Oceanol Acta 14:397–413Google Scholar
  16. Meyer-Reil L-A (1999) Verbundprojekt ÖKOBOD–Beitrag zum wissenschaftlichen Verständnis der Ökologie der Boddengewässer. Bodden 8:87–105Google Scholar
  17. Oertzen J-A von (1988) Das Leben im Brackwasser–Konfrontation oder Opportunismus? Biol Rundsch 26:197–212Google Scholar
  18. Orlova MI, Telesh IV, Berezina NA, Antsulevich AE, Maximov AA, Litvinchuk LF (2006) Effects of nonindigenous species on diversity and community functioning in the eastern Gulf of Finland (Baltic Sea). Helgoland Mar Res 60:98–105CrossRefGoogle Scholar
  19. Remane A, Schlieper C (1958) Die Biologie des Brackwassers. In: Thienemann A (ed) Die Binnengewässer 22:1–348Google Scholar
  20. Rumohr H (1996) Veränderungen des Lebens am Meeresboden. In: Lozán JL, Lampe R, Matthäus W, Rachor E, Rumohr H, Westernhagen H von (eds) Warnsignale aus der Ostsee. Parey, Berlin, pp 162–168Google Scholar
  21. Samuelsson K, Andersson A (2003) Predation limitation in the pelagic microbial food web in an oligotrophic aquatic system. Aquat Microb Ecol 30:239–250CrossRefGoogle Scholar
  22. Scheffer M (1998) Ecology of shallow lakes, 1st edn. Chapman and Hall, LondonGoogle Scholar
  23. Schiewer U (1998a) 30 years eutrophication in shallow brackish waters–lessons to be learned. Hydrobiologia 363:73–79CrossRefGoogle Scholar
  24. Schiewer U (1998b) Hypertrophy of a Baltic estuary–changes in structure and function of the planktonic community. Verh Int Verein Limnol 26:1503–1507Google Scholar
  25. Schiewer U, Arndt H, Baader G, Ballin G, Börner R, Evert F-K, Georgi F, Heerkloss R, Jost G, Kell V, Krüger B, Walter T (1986) The bounds and potential effects of NH4 + (loading) on the pelagic system of a Baltic estuary. Limnologica (Berlin) 17:7–28Google Scholar
  26. Schubert H (1996) Ökophysiologie der Lichtanpassung des Phytoplanktons eutropher Flachgewässer. Habil. Univ Rostock, RostockGoogle Scholar
  27. Wikner J, Hagström Å (1988) Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment. Mar Ecol Progr Ser 50:137–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • U. Schiewer

    There are no affiliations available

    Personalised recommendations