Skip to main content
Book cover

Axions pp 157–197Cite as

Recent Results from the PVLAS Experiment on the Magnetized Vacuum

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 741))

Abstract

The vacuum element can be used as a target in a photon-photon collider in order to study its properties. Some of these properties are predicted by Quantum Electrodynamics, while additional and unexpected properties might be linked to the existence of yet undiscovered axion-like particles (ALPs) interacting with two photons. In this low energy case (1–2 texteV), real photons from a polarized laser beam are scattered off virtual photons provided by a magnetic field. Information on the scattering processes can be obtained by measuring changes in the polarization state of the probe photons. In the PVLAS (Polarizzazione del Vuoto con LASer) experiment, running at the Legnaro Laboratory of the Istituto Nazionale di Fisica Nucleare (INFN), near Padova, Italy, a linearly polarized laser beam is sent through a 5 textT strong magnetic field in vacuum, where it is reflected back and forth, by means of a Fabry-P’erot resonator, ∼ 50,000 times over a distance of 1 textm. A heterodyne ellipsometer allows the simultaneous detection of a birefringence and a rotation of the polarization plane. The sensitivity of the instrument allows the detection of rotation or of ellipticity angles of about 10-9 textrad, in an hour of data taking. The measurement technique employed by PVLAS will be illustrated, and recent results on polarization effects due to the magnetized vacuum will be presented in this chapter. The interpretation of these effects in terms of the production of ALPs will also be discussed. Finally, the realization of a photon-regeneration type experiment will be briefly illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Euler, H., Kochel, K.: Über die Streuung von Licht an Licht nach der Diracschen Theorie. Naturwissenschaften 23, 246 (1935); Euler, H.: Über die Streuung von Licht an Licht nach der Diracschen Theorie. Ann. Phys. 26, 39 (1936); Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 718 (1936); Heisenberg, W., Euler, H.: Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714 (1936) [physics/0605038]; Weisskopf, V.S.: Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Mat. Phys. Medd.-K. Dan. Vidensk. Selsk. 14, 6 (1936); Schwinger, J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951); Adler, S.L.: Photon splitting and photon dispersion in a strong magnetic field. Annals Phys. 67, 599 (1971)

    Google Scholar 

  2. Sikivie, P.: Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415 (1983), (E) ibid. 52, 695 (1984); Anselm, A.A.: Yad. Fiz 442, 1480 (1985); Gasperini, M.: Axion production by electromagnetic fields. Phys. Rev. Lett. 59, 396 (1987)

    Article  ADS  Google Scholar 

  3. Iacopini, E., Zavattini, E.: Experimental method to detect the vacuum birefringence induced by a magnetic field. Phys. Lett. B 85, 151 (1979); Iacopini, E., Smith, B., Stefanini, G., Zavattini, E.: On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field. Nuovo Cim. B 61, 21 (1981); Zavattini, E.: Magnetically induced optical activity of vacuum. Comments At. Mol. Phys. 33, 83 (1996)

    Article  ADS  Google Scholar 

  4. Maiani, L., Petronzio, R., Zavattini, E.: Effects of nearly massless, spin zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359 (1986); Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)

    Article  ADS  Google Scholar 

  5. Bakalov, D., et al.: Production and detection of dark matter candidates: The PVLAS experiment. Prepared for 7th Marcel Grossmann Meeting on General Relativity (MG 7), Stanford, California, 24-30 Jul 1994, urlhttp://www.slac.stanford.edu/spires/find/hep/www?irn=5070643; Bakalov, D., et al.: The measurement of vacuum polarization: The PVLAS experiment. Hyperfine Interactions 114, 103 (1998)

    Google Scholar 

  6. Bakalov, D., et al.: Experimental method to detect the magnetic birefringence of vacuum. Quantum Semiclass. Opt. 10, 239 (1998)

    Article  ADS  Google Scholar 

  7. Pengo, R., et al.: Magnetic Birefringence of Vacuum: the PVLAS experiment. In: Zavattini, E., Bakalor, D., Rizzo, C Frontier Tests of QED and Physics of the Vacuum, p. 59. Heron Press, Sofia (1998)

    Google Scholar 

  8. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and polarized light. North nobreak Holland Publishing Co. (1977)

    Google Scholar 

  9. Brandi, F., Polacco, E., Ruoso, G.: Stress-optic modulator: a novel device for high sensitivity linear birefringence measurements. Meas. Sci. Technol. 12, 1503 (2001)

    Article  ADS  Google Scholar 

  10. Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford 691 (1980)

    Google Scholar 

  11. Bregant, M., Cantatore, G., Della Valle, F., Ruoso, G., Zavattini, G.: Frequency locking to a high-finesse Fabry-Pérot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator. Rev. Sci. Instrum. 73, 4142 (2002) [hep-ex/0202046]; Cantatore, G., et al.: Frequency locking of a Nd:YAG laser using the laser itself as the optical phase modulator. Rev. Sci. Instrum. 66, 2785 (1995); De Riva, A.M. et al.: Very high Q frequency-locked Fabry-Pérot cavity. Rev. Sci. Instrum. 67, 2680 (1996)

    Article  ADS  Google Scholar 

  12. Zavattini, E., et al.: Signal processing in the PVLAS experiment. In: WSEAS Trans. Syst. 11, 1931 (2005) [hep-ex/0509029]; Milotti, E.: Sine-fit procedure for unevenly sampled, multiply clocked signals. J. Comp. Phys. 202, 134 (2005)

    Google Scholar 

  13. Zavattini, E., et al. (PVLAS Collaboration) Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 96, 110406 (2006) [hep-ex/0507107]

    Article  ADS  Google Scholar 

  14. Iacopini, E., Stefanini, G., Zavattini, E.: Effects of a magnetic field on the optical properties of dielectric mirrors. Appl. Phys. A 32, 63 (1983)

    Article  ADS  Google Scholar 

  15. Bialolenker, G., Polacco, E., Rizzo, C., Ruoso, G.: First evidence for the linear magnetic birefringence of the reflecting surface of interferential mirrors. Appl. Phys. B 68, 703 (1999)

    Article  ADS  Google Scholar 

  16. Rizzo, C., Rizzo, A., Bishop, D.M.: The Cotton-Mouton effect in gases: experiment and theory. Int. Rev. Phys. Chem. 16, 81 (1997)

    Article  Google Scholar 

  17. Carusotto, S., et al.: Measurement of the magnetic birefringence of noble gases. J. Opt. Soc. Am. B 1, 635 (1984); Cameron, R., et al.: First measurement of the magnetic birefringence of helium gas. Phys. Lett. A 157, 125 (1991); Cameron, R., et al.: Measurement of the magnetic birefringence of neon gas. J. Opt. Soc. Am. B 8, 520 (1991)

    Google Scholar 

  18. Bregant, M., et al.: Measurement of the Cotton-Mouton effect in krypton and xenon at 1064,nm with the PVLAS apparatus. Chem. Phys. Lett. 392, 276 (2004); Bregant, M., et al.: A precise measurement of the Cotton-Mouton effect in neon. Chem. Phys. Lett. 410, 288 (2005)

    Article  ADS  Google Scholar 

  19. Adler, S.L., et al.: Photon splitting in a strong magnetic field. Phys. Rev. Lett. 25, 1061 (1970)

    Article  ADS  Google Scholar 

  20. Maiani, L., Petronzio, R., Zavattini, E.: Effects of nearly massless, spin zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359 (1986)

    Article  ADS  Google Scholar 

  21. Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)

    Article  ADS  Google Scholar 

  22. Semertzidis, Y., et al.: Limits on the production of light scalar and pseudoscalar particles. Phys. Rev. Lett. 64, 2988 (1990); Cameron, R., et al.: Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 47, 3707 (1993)

    Google Scholar 

  23. Masso, E., Toldra, R.: On a light spinless particle coupled to photons. Phys. Rev. D 52, 1755 (1995) [hep-ph/9503293]

    Article  ADS  Google Scholar 

  24. Ruoso, G., et al.: Search for photon regeneration in a magnetic field. Z. Phys. C 56, 505 (1992)

    Article  ADS  Google Scholar 

  25. Zavattini, G., et al.: On measuring birefringences and dichroisms using Fabry-Pérot cavities. Appl. Phys. B 83, 571 (2006)

    Article  ADS  Google Scholar 

  26. Van Bibber, K., Dagdeviren, N.R., Koonin, S.E., Kerman, A., Nelson, H.N.: An experiment to produce and detect light pseudoscalars. Phys. Rev. Lett. 59, 759 (1987)

    Article  ADS  Google Scholar 

  27. Miller, A.J., et al.: Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791 (2003)

    Article  ADS  Google Scholar 

  28. Zavattini E., et al. (PVLAS Collaboration): New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum, arXiv:0706.3419 [hep-ex]

    Google Scholar 

  29. Robilliard C., et al. (BMV Collaboration): No light shining through a wall, arXiv:0707.1296 [hep-ex]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cantatore, G. (2008). Recent Results from the PVLAS Experiment on the Magnetized Vacuum. In: Kuster, M., Raffelt, G., Beltrán, B. (eds) Axions. Lecture Notes in Physics, vol 741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73518-2_9

Download citation

Publish with us

Policies and ethics