Advertisement

Axions pp 157-197 | Cite as

Recent Results from the PVLAS Experiment on the Magnetized Vacuum

  • Giovanni Cantatore
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

The vacuum element can be used as a target in a photon-photon collider in order to study its properties. Some of these properties are predicted by Quantum Electrodynamics, while additional and unexpected properties might be linked to the existence of yet undiscovered axion-like particles (ALPs) interacting with two photons. In this low energy case (1–2 texteV), real photons from a polarized laser beam are scattered off virtual photons provided by a magnetic field. Information on the scattering processes can be obtained by measuring changes in the polarization state of the probe photons. In the PVLAS (Polarizzazione del Vuoto con LASer) experiment, running at the Legnaro Laboratory of the Istituto Nazionale di Fisica Nucleare (INFN), near Padova, Italy, a linearly polarized laser beam is sent through a 5 textT strong magnetic field in vacuum, where it is reflected back and forth, by means of a Fabry-P’erot resonator, ∼ 50,000 times over a distance of 1 textm. A heterodyne ellipsometer allows the simultaneous detection of a birefringence and a rotation of the polarization plane. The sensitivity of the instrument allows the detection of rotation or of ellipticity angles of about 10-9 textrad, in an hour of data taking. The measurement technique employed by PVLAS will be illustrated, and recent results on polarization effects due to the magnetized vacuum will be presented in this chapter. The interpretation of these effects in terms of the production of ALPs will also be discussed. Finally, the realization of a photon-regeneration type experiment will be briefly illustrated.

Keywords

Transition Edge Sensor Heterodyne Detection Linear Birefringence Output Polarizer Polarize Laser Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Euler, H., Kochel, K.: Über die Streuung von Licht an Licht nach der Diracschen Theorie. Naturwissenschaften 23, 246 (1935); Euler, H.: Über die Streuung von Licht an Licht nach der Diracschen Theorie. Ann. Phys. 26, 39 (1936); Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 718 (1936); Heisenberg, W., Euler, H.: Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714 (1936) [physics/0605038]; Weisskopf, V.S.: Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Mat. Phys. Medd.-K. Dan. Vidensk. Selsk. 14, 6 (1936); Schwinger, J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951); Adler, S.L.: Photon splitting and photon dispersion in a strong magnetic field. Annals Phys. 67, 599 (1971)Google Scholar
  2. 2.
    Sikivie, P.: Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415 (1983), (E) ibid. 52, 695 (1984); Anselm, A.A.: Yad. Fiz 442, 1480 (1985); Gasperini, M.: Axion production by electromagnetic fields. Phys. Rev. Lett. 59, 396 (1987)CrossRefADSGoogle Scholar
  3. 3.
    Iacopini, E., Zavattini, E.: Experimental method to detect the vacuum birefringence induced by a magnetic field. Phys. Lett. B 85, 151 (1979); Iacopini, E., Smith, B., Stefanini, G., Zavattini, E.: On a sensitive ellipsometer to detect the vacuum polarization induced by a magnetic field. Nuovo Cim. B 61, 21 (1981); Zavattini, E.: Magnetically induced optical activity of vacuum. Comments At. Mol. Phys. 33, 83 (1996)CrossRefADSGoogle Scholar
  4. 4.
    Maiani, L., Petronzio, R., Zavattini, E.: Effects of nearly massless, spin zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359 (1986); Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Bakalov, D., et al.: Production and detection of dark matter candidates: The PVLAS experiment. Prepared for 7th Marcel Grossmann Meeting on General Relativity (MG 7), Stanford, California, 24-30 Jul 1994, urlhttp://www.slac.stanford.edu/spires/find/hep/www?irn=5070643; Bakalov, D., et al.: The measurement of vacuum polarization: The PVLAS experiment. Hyperfine Interactions 114, 103 (1998)Google Scholar
  6. 6.
    Bakalov, D., et al.: Experimental method to detect the magnetic birefringence of vacuum. Quantum Semiclass. Opt. 10, 239 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Pengo, R., et al.: Magnetic Birefringence of Vacuum: the PVLAS experiment. In: Zavattini, E., Bakalor, D., Rizzo, C Frontier Tests of QED and Physics of the Vacuum, p. 59. Heron Press, Sofia (1998)Google Scholar
  8. 8.
    Azzam, R.M.A., Bashara, N.M.: Ellipsometry and polarized light. North nobreak Holland Publishing Co. (1977)Google Scholar
  9. 9.
    Brandi, F., Polacco, E., Ruoso, G.: Stress-optic modulator: a novel device for high sensitivity linear birefringence measurements. Meas. Sci. Technol. 12, 1503 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford 691 (1980)Google Scholar
  11. 11.
    Bregant, M., Cantatore, G., Della Valle, F., Ruoso, G., Zavattini, G.: Frequency locking to a high-finesse Fabry-Pérot cavity of a frequency doubled Nd:YAG laser used as the optical phase modulator. Rev. Sci. Instrum. 73, 4142 (2002) [hep-ex/0202046]; Cantatore, G., et al.: Frequency locking of a Nd:YAG laser using the laser itself as the optical phase modulator. Rev. Sci. Instrum. 66, 2785 (1995); De Riva, A.M. et al.: Very high Q frequency-locked Fabry-Pérot cavity. Rev. Sci. Instrum. 67, 2680 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Zavattini, E., et al.: Signal processing in the PVLAS experiment. In: WSEAS Trans. Syst. 11, 1931 (2005) [hep-ex/0509029]; Milotti, E.: Sine-fit procedure for unevenly sampled, multiply clocked signals. J. Comp. Phys. 202, 134 (2005)Google Scholar
  13. 13.
    Zavattini, E., et al. (PVLAS Collaboration) Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 96, 110406 (2006) [hep-ex/0507107]CrossRefADSGoogle Scholar
  14. 14.
    Iacopini, E., Stefanini, G., Zavattini, E.: Effects of a magnetic field on the optical properties of dielectric mirrors. Appl. Phys. A 32, 63 (1983)CrossRefADSGoogle Scholar
  15. 15.
    Bialolenker, G., Polacco, E., Rizzo, C., Ruoso, G.: First evidence for the linear magnetic birefringence of the reflecting surface of interferential mirrors. Appl. Phys. B 68, 703 (1999)CrossRefADSGoogle Scholar
  16. 16.
    Rizzo, C., Rizzo, A., Bishop, D.M.: The Cotton-Mouton effect in gases: experiment and theory. Int. Rev. Phys. Chem. 16, 81 (1997)CrossRefGoogle Scholar
  17. 17.
    Carusotto, S., et al.: Measurement of the magnetic birefringence of noble gases. J. Opt. Soc. Am. B 1, 635 (1984); Cameron, R., et al.: First measurement of the magnetic birefringence of helium gas. Phys. Lett. A 157, 125 (1991); Cameron, R., et al.: Measurement of the magnetic birefringence of neon gas. J. Opt. Soc. Am. B 8, 520 (1991)Google Scholar
  18. 18.
    Bregant, M., et al.: Measurement of the Cotton-Mouton effect in krypton and xenon at 1064,nm with the PVLAS apparatus. Chem. Phys. Lett. 392, 276 (2004); Bregant, M., et al.: A precise measurement of the Cotton-Mouton effect in neon. Chem. Phys. Lett. 410, 288 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Adler, S.L., et al.: Photon splitting in a strong magnetic field. Phys. Rev. Lett. 25, 1061 (1970)CrossRefADSGoogle Scholar
  20. 20.
    Maiani, L., Petronzio, R., Zavattini, E.: Effects of nearly massless, spin zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359 (1986)CrossRefADSGoogle Scholar
  21. 21.
    Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)CrossRefADSGoogle Scholar
  22. 22.
    Semertzidis, Y., et al.: Limits on the production of light scalar and pseudoscalar particles. Phys. Rev. Lett. 64, 2988 (1990); Cameron, R., et al.: Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 47, 3707 (1993)Google Scholar
  23. 23.
    Masso, E., Toldra, R.: On a light spinless particle coupled to photons. Phys. Rev. D 52, 1755 (1995) [hep-ph/9503293]CrossRefADSGoogle Scholar
  24. 24.
    Ruoso, G., et al.: Search for photon regeneration in a magnetic field. Z. Phys. C 56, 505 (1992)CrossRefADSGoogle Scholar
  25. 25.
    Zavattini, G., et al.: On measuring birefringences and dichroisms using Fabry-Pérot cavities. Appl. Phys. B 83, 571 (2006)CrossRefADSGoogle Scholar
  26. 26.
    Van Bibber, K., Dagdeviren, N.R., Koonin, S.E., Kerman, A., Nelson, H.N.: An experiment to produce and detect light pseudoscalars. Phys. Rev. Lett. 59, 759 (1987)CrossRefADSGoogle Scholar
  27. 27.
    Miller, A.J., et al.: Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791 (2003)CrossRefADSGoogle Scholar
  28. 28.
    Zavattini E., et al. (PVLAS Collaboration): New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum, arXiv:0706.3419 [hep-ex]Google Scholar
  29. 29.
    Robilliard C., et al. (BMV Collaboration): No light shining through a wall, arXiv:0707.1296 [hep-ex]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giovanni Cantatore
    • 1
  1. 1.INFN Sezione di Trieste and University of TriesteItaly

Personalised recommendations