Skip to main content

Microwave Cavity Searches

  • Chapter
Axions

Part of the book series: Lecture Notes in Physics ((LNP,volume 741))

Abstract

This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons – the “photon-as-wave” approach (i.e., conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and the “photon-as-particle” approach (i.e.,Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The chapter will conclude with a discussion of future plans and challenges for the microwave cavity experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schramm, D.N., Turner, M.S.: Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303 (1998) [astro-ph/9706069]

    Article  ADS  Google Scholar 

  2. Tegmark, M., et al. [SDSS Collaboration]: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004) [astro-ph/0310723]

    Article  ADS  Google Scholar 

  3. Zwicky, F.: On the masses of nebulae and of clusters of nebulae. Helvetica Phys. Acta 2, 110 (1933)

    ADS  Google Scholar 

  4. Jungman, G., Kamionkowski, M., Griest, K.: Supersymmetric dark matter. Phys. Rept. 267, 195 (1996) [hep-ph/9506380]

    Article  ADS  Google Scholar 

  5. Spergel, D.N., et al. [WMAP Collaboration]: First year Wilkinson microwave anisotropy probe (WMAP) [bservations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]

    Article  ADS  Google Scholar 

  6. De Paolis, F., Ingrosso, G., Jetzer, P., Roncadelli, M.: A case for a baryonic dark halo. Phys. Rev. Lett. 74, 14 (1995) [astro-ph/9410016]

    Article  ADS  Google Scholar 

  7. Alcock, C., et al. [MACHO Collaboration]: The MACHO project: Microlensing results from 5.7 years of LMC observations. Astrophys. J. 542, 281 (2000) [astro-ph/0001272]

    Article  ADS  Google Scholar 

  8. Asztalos, S.J., et al.: An improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004) [astro-ph/0310042]

    Article  ADS  Google Scholar 

  9. Kleyna, J.T., et al.: First clear signatures of an extended dark matter halo in the Draco dwarf spheroidal. Astrophys. J. Lett. 563, 115 (2001). [astro-ph/0111329]

    Article  ADS  Google Scholar 

  10. Primack, J.R.: Dark matter and structure formation in the universe. In: Proceedings of Midrasha Matematicae in Jerusalem: Winter School in Dynamic Systems (1997), [astro-ph/9707285]

    Google Scholar 

  11. Gates, E.I., Gyuk, G., Turner, M.S.: The local halo density. Astrophys. J. 449, L123 (1995) [astro-ph/9505039]

    Article  ADS  Google Scholar 

  12. Baker, C.A., et al.: An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006) [hep-ex/0602020]

    Article  ADS  Google Scholar 

  13. Kim, J.E.: Weak interaction singlet and strong CP invariance. Phys. Rev. Lett. 43, 103 (1979)

    Article  ADS  Google Scholar 

  14. Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 166, 493 (1980)

    MathSciNet  Google Scholar 

  15. Zhitnitskii, A.R.: On the possible suppression of axion-hadron interactions. Soviet Journal of Nucl. Phys. 31, 260 (1980)

    Google Scholar 

  16. Dine, M., Fischler, W., Srednicki, M.: A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104, 199 (1981)

    Article  ADS  Google Scholar 

  17. Weinberg, S.: A new light boson? Phys. Rev. Lett. 40, 223 (1978)

    Article  ADS  Google Scholar 

  18. Wilczek, F.: Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978)

    Article  ADS  Google Scholar 

  19. Bradley, R., et al.: Microwave cavity searches for dark-matter axions. Rev. Mod. Phys. 75, 777 (2003)

    Article  ADS  Google Scholar 

  20. Sikivie, P.: Evidence for ring caustics in the Milky Way. Phys. Lett. B 567, 1 (2003) [astro-ph/0109296]

    Article  ADS  Google Scholar 

  21. Sikivie, P.: Experimental tests of the ‘invisible’ axion. Phys. Rev. Lett. 51, 1415 (1983) [Erratum-ibid. 52, 695 (1984)]

    Article  ADS  Google Scholar 

  22. Lasher, L.: Pioneer 10 Project Manager, (2005), priv. comm

    Google Scholar 

  23. Dicke, R.H.: The measurement of thermal radiation at microwave frequencies. Rev. of Sci. Instrum. 17, 268 (1946)

    Article  ADS  Google Scholar 

  24. Asztalos, S.J., et al.: An improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004) [astro-ph/0310042]

    Article  ADS  Google Scholar 

  25. De Panfilis, S., et al.: Limits on the abundance and coupling of cosmic axions at 4.5 , umu rm eV ≤ m(a) [ 5.0 , umu rm eV. Phys. Rev. Lett. 59, 839 (1987)

    Article  ADS  Google Scholar 

  26. Hagmann, C., Sikivie, P., Sullivan, N.S. Tanner, D.B.: Results from a search for cosmic axions. Phys. Rev. D 42, 1297 (1990)

    Article  ADS  Google Scholar 

  27. Kinion, D.S.: First results from a multiple microwave cavity search for dark matter axions. UMI-30-19020, UC Davis – Physics Department, PhD Thesis (2001), urlhttp://www.slac.stanford.edu/spires/find/hep/www?r=umi-30-19020

    Google Scholar 

  28. Daw, E., Bradley, R.F.: Effects of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier. J. Appl. Phys. 82, 1925 (1997)

    Article  ADS  Google Scholar 

  29. van Bibber, K., Rosenberg, L.J.: Ultrasensitive searches for the axion. Phys. Today 59N8 (2006) 30

    Article  Google Scholar 

  30. Asztalos, S., et al.: Large-scale microwave cavity search for dark-matter axions. Phys. Rev. D 64, 092003 (2001)

    Article  ADS  Google Scholar 

  31. Duffy, L.D., et al.: A high resolution search for dark-matter axions. Phys. Rev. D 74, 012006 (2006) [astro-ph/0603108]

    Article  ADS  Google Scholar 

  32. Ketchen, M.B., Jaycox, M.B.: Ultra-low-noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl. Phys. Lett. 40, 736 (1982)

    Article  ADS  Google Scholar 

  33. Tada, M., et al.: Single-photon detection of microwave blackbody radiations in a low-temperature resonant-cavity with high Rydberg atoms. Phys. Lett. B 349, 488 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carosi, G., Bibber, K.v. (2008). Microwave Cavity Searches. In: Kuster, M., Raffelt, G., Beltrán, B. (eds) Axions. Lecture Notes in Physics, vol 741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73518-2_8

Download citation

Publish with us

Policies and ethics