Axions pp 135-156 | Cite as

Microwave Cavity Searches

  • Gianpaolo Carosi
  • Karl van Bibber
Part of the Lecture Notes in Physics book series (LNP, volume 741)


This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons – the “photon-as-wave” approach (i.e., conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and the “photon-as-particle” approach (i.e.,Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The chapter will conclude with a discussion of future plans and challenges for the microwave cavity experiment.


Dark Matter Transverse Magnetic Wilkinson Microwave Anisotropy Probe Dark Matter Candidate Noise Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schramm, D.N., Turner, M.S.: Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303 (1998) [astro-ph/9706069]CrossRefADSGoogle Scholar
  2. 2.
    Tegmark, M., et al. [SDSS Collaboration]: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004) [astro-ph/0310723]CrossRefADSGoogle Scholar
  3. 3.
    Zwicky, F.: On the masses of nebulae and of clusters of nebulae. Helvetica Phys. Acta 2, 110 (1933)ADSGoogle Scholar
  4. 4.
    Jungman, G., Kamionkowski, M., Griest, K.: Supersymmetric dark matter. Phys. Rept. 267, 195 (1996) [hep-ph/9506380]CrossRefADSGoogle Scholar
  5. 5.
    Spergel, D.N., et al. [WMAP Collaboration]: First year Wilkinson microwave anisotropy probe (WMAP) [bservations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]CrossRefADSGoogle Scholar
  6. 6.
    De Paolis, F., Ingrosso, G., Jetzer, P., Roncadelli, M.: A case for a baryonic dark halo. Phys. Rev. Lett. 74, 14 (1995) [astro-ph/9410016]CrossRefADSGoogle Scholar
  7. 7.
    Alcock, C., et al. [MACHO Collaboration]: The MACHO project: Microlensing results from 5.7 years of LMC observations. Astrophys. J. 542, 281 (2000) [astro-ph/0001272]CrossRefADSGoogle Scholar
  8. 8.
    Asztalos, S.J., et al.: An improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004) [astro-ph/0310042]CrossRefADSGoogle Scholar
  9. 9.
    Kleyna, J.T., et al.: First clear signatures of an extended dark matter halo in the Draco dwarf spheroidal. Astrophys. J. Lett. 563, 115 (2001). [astro-ph/0111329]CrossRefADSGoogle Scholar
  10. 10.
    Primack, J.R.: Dark matter and structure formation in the universe. In: Proceedings of Midrasha Matematicae in Jerusalem: Winter School in Dynamic Systems (1997), [astro-ph/9707285]Google Scholar
  11. 11.
    Gates, E.I., Gyuk, G., Turner, M.S.: The local halo density. Astrophys. J. 449, L123 (1995) [astro-ph/9505039]CrossRefADSGoogle Scholar
  12. 12.
    Baker, C.A., et al.: An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006) [hep-ex/0602020]CrossRefADSGoogle Scholar
  13. 13.
    Kim, J.E.: Weak interaction singlet and strong CP invariance. Phys. Rev. Lett. 43, 103 (1979)CrossRefADSGoogle Scholar
  14. 14.
    Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 166, 493 (1980)MathSciNetGoogle Scholar
  15. 15.
    Zhitnitskii, A.R.: On the possible suppression of axion-hadron interactions. Soviet Journal of Nucl. Phys. 31, 260 (1980)Google Scholar
  16. 16.
    Dine, M., Fischler, W., Srednicki, M.: A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104, 199 (1981)CrossRefADSGoogle Scholar
  17. 17.
    Weinberg, S.: A new light boson? Phys. Rev. Lett. 40, 223 (1978)CrossRefADSGoogle Scholar
  18. 18.
    Wilczek, F.: Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978)CrossRefADSGoogle Scholar
  19. 19.
    Bradley, R., et al.: Microwave cavity searches for dark-matter axions. Rev. Mod. Phys. 75, 777 (2003)CrossRefADSGoogle Scholar
  20. 20.
    Sikivie, P.: Evidence for ring caustics in the Milky Way. Phys. Lett. B 567, 1 (2003) [astro-ph/0109296]CrossRefADSGoogle Scholar
  21. 21.
    Sikivie, P.: Experimental tests of the ‘invisible’ axion. Phys. Rev. Lett. 51, 1415 (1983) [Erratum-ibid. 52, 695 (1984)]CrossRefADSGoogle Scholar
  22. 22.
    Lasher, L.: Pioneer 10 Project Manager, (2005), priv. commGoogle Scholar
  23. 23.
    Dicke, R.H.: The measurement of thermal radiation at microwave frequencies. Rev. of Sci. Instrum. 17, 268 (1946)CrossRefADSGoogle Scholar
  24. 24.
    Asztalos, S.J., et al.: An improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004) [astro-ph/0310042]CrossRefADSGoogle Scholar
  25. 25.
    De Panfilis, S., et al.: Limits on the abundance and coupling of cosmic axions at 4.5 , umu rm eV ≤ m(a) [ 5.0 , umu rm eV. Phys. Rev. Lett. 59, 839 (1987)CrossRefADSGoogle Scholar
  26. 26.
    Hagmann, C., Sikivie, P., Sullivan, N.S. Tanner, D.B.: Results from a search for cosmic axions. Phys. Rev. D 42, 1297 (1990)CrossRefADSGoogle Scholar
  27. 27.
    Kinion, D.S.: First results from a multiple microwave cavity search for dark matter axions. UMI-30-19020, UC Davis – Physics Department, PhD Thesis (2001), url Scholar
  28. 28.
    Daw, E., Bradley, R.F.: Effects of high magnetic fields on the noise temperature of a heterostructure field-effect transistor low-noise amplifier. J. Appl. Phys. 82, 1925 (1997)CrossRefADSGoogle Scholar
  29. 29.
    van Bibber, K., Rosenberg, L.J.: Ultrasensitive searches for the axion. Phys. Today 59N8 (2006) 30CrossRefGoogle Scholar
  30. 30.
    Asztalos, S., et al.: Large-scale microwave cavity search for dark-matter axions. Phys. Rev. D 64, 092003 (2001)CrossRefADSGoogle Scholar
  31. 31.
    Duffy, L.D., et al.: A high resolution search for dark-matter axions. Phys. Rev. D 74, 012006 (2006) [astro-ph/0603108]CrossRefADSGoogle Scholar
  32. 32.
    Ketchen, M.B., Jaycox, M.B.: Ultra-low-noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl. Phys. Lett. 40, 736 (1982)CrossRefADSGoogle Scholar
  33. 33.
    Tada, M., et al.: Single-photon detection of microwave blackbody radiations in a low-temperature resonant-cavity with high Rydberg atoms. Phys. Lett. B 349, 488 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gianpaolo Carosi
    • 1
  • Karl van Bibber
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermore94550, USA

Personalised recommendations