Advertisement

Axions pp 115-134 | Cite as

Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences

  • Alessandro Mirizzi
  • Georg G. Raffelt1
  • Pasquale D. Serpico
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic distance indicators such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.

Keywords

Dark Energy Cosmic Microwave Background Wilkinson Microwave Anisotropy Probe Cosmic Acceleration Hubble Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sikivie, P.: Experimental tests of the ‘invisible’ axion. Phys. Rev. Lett. 51, 1415 (1983), (E) ibid. 52, 695 (1984)CrossRefADSGoogle Scholar
  2. 2.
    Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)CrossRefADSGoogle Scholar
  3. 3.
    Bradley, R., et al.: Microwave cavity searches for dark-matter axions. Rev. Mod. Phys. 75, 777 (2003)CrossRefADSGoogle Scholar
  4. 4.
    van Bibber, K., McIntyre, P.M., Morris, D.E., Raffelt, G.G.: A practical laboratory detector for solar axions. Phys. Rev. D 39, 2089 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Moriyama, S., Minowa, M., Namba, T., Inoue, Y., Takasu, Y., Yamamoto, A.: Direct search for solar axions by using strong magnetic field and X-ray detectors. Phys. Lett. B 434, 147 (1998) [hep-ex/9805026]CrossRefADSGoogle Scholar
  6. 6.
    Inoue, Y., Namba, T., Moriyama, S., Minowa, M., Takasu, Y., Horiuchi, T., Yamamoto, A.: Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium. Phys. Lett. B 536, 18 (2002) [astro-ph/0204388]CrossRefADSGoogle Scholar
  7. 7.
    Zioutas, K., et al. (CAST Collaboration): First results from the CERN axion solar telescope (CAST). Phys. Rev. Lett. 94, 121301 (2005) [hep-ex/0411033]CrossRefADSGoogle Scholar
  8. 8.
    Raffelt, G.G.: Stars as Laboratories for Fundamental Physics. University of Chicago Press, Chicago (1996)Google Scholar
  9. 9.
    Raffelt, G.G.: Particle physics from stars. Annu. Rev. Nucl. Part. Sci. 49, 163 (1999) [hep-ph/9903472]CrossRefADSGoogle Scholar
  10. 10.
    Harari, D., Sikivie, P.: Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys. Lett. B 289, 67 (1992)CrossRefADSGoogle Scholar
  11. 11.
    Hutsemekers, D., Cabanac, R., Lamy, H., Sluse, D.: Mapping extreme-scale alignments of quasar polarization vectors. Astron. Astrophys. 441, 915 (2005) [astro-ph/0507274]CrossRefADSGoogle Scholar
  12. 12.
    Krasnikov, S.V.: New astrophysical constraints on the light pseudoscalar photon coupling. Phys. Rev. Lett. 76, 2633 (1996)CrossRefADSGoogle Scholar
  13. 13.
    Gorbunov, D.S., Raffelt, G.G., Semikoz, D.V.: Axion-like particles as ultrahigh-energy cosmic rays?. Phys. Rev. D 64, 096005 (2001) [hep-ph/0103175]CrossRefADSGoogle Scholar
  14. 14.
    Csáki, C., Kaloper, N., Peloso, M., Terning, J.: Super-GZK photons from photon axion mixing. JCAP 0305, 005 (2003) [hep-ph/0302030]Google Scholar
  15. 15.
    Csáki, C., Kaloper, N., Terning, J.: (CKT I), Dimming supernovae without cosmic acceleration. Phys. Rev. Lett. 88, 161302 (2002) [hep-ph/0111311]CrossRefADSGoogle Scholar
  16. 16.
    Riess, A.G., et al. (Supernova Search Team Collaboration): Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) [astro-ph/9805201]CrossRefADSGoogle Scholar
  17. 17.
    Perlmutter, S., et al. (Supernova Cosmology Project Collaboration): Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999) [astro-ph/9812133]CrossRefADSGoogle Scholar
  18. 18.
    Riess, A.G., et al. (Supernova Search Team Collaboration): Type Ia supernova discoveries at z≥1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004) [astro-ph/0402512]CrossRefADSGoogle Scholar
  19. 19.
    Carroll, S.M.: Why is the universe accelerating? eConf C0307282 (2003) TTH09 [AIP Conf. Proc. 743, 16 (2005), astro-ph/0310342]Google Scholar
  20. 20.
    Anselm, A.A.: Experimental test for arion leftrightarrow photon oscillations in a homogeneous constant magnetic field. Phys. Rev. D 37, 2001 (1988)CrossRefADSGoogle Scholar
  21. 21.
    Deffayet, C., Harari, D., Uzan, J.P., Zaldarriaga, M.: Dimming of supernovae by photon-pseudoscalar conversion and the intergalactic plasma. Phys. Rev. D 66, 043517 (2002) [hep-ph/0112118]CrossRefADSGoogle Scholar
  22. 22.
    Kuo, T.K., Pantaleone, J.T.: Neutrino oscillations in matter. Rev. Mod. Phys. 61, 937 (1989)CrossRefADSGoogle Scholar
  23. 23.
    Grossman, Y., Roy, S., Zupan, J.: Effects of initial axion production and photon axion oscillation on type Ia supernova dimming. Phys. Lett. B 543, 23 (2002) [hep-ph/0204216]CrossRefADSGoogle Scholar
  24. 24.
    Kronberg, P.P.: Extragalactic magnetic fields. Rept. Prog. Phys. 57, 325 (1994)CrossRefADSGoogle Scholar
  25. 25.
    Spergel, D.N., et al. (WMAP Collaboration): First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]CrossRefADSGoogle Scholar
  26. 26.
    Anselm, A.A., Uraltsev, N.G.: A second massless axion? Phys. Lett. B 114, 39 (1982)ADSGoogle Scholar
  27. 27.
    Anselm, A.A., Uraltsev, N.G.: Long range ‘arion’ field in the radiofrequency band. Phys. Lett. B 116, 161 (1982)CrossRefADSGoogle Scholar
  28. 28.
    Brockway, J.W., Carlson, E.D., Raffelt, G.G.: SN 1987A gamma-ray limits on the conversion of pseudoscalars. Phys. Lett. B 383, 439 (1996) [astro-ph/ 9605197]CrossRefADSGoogle Scholar
  29. 29.
    Grifols, J.A., Massó, E., Toldrá, R.: Gamma rays from SN 1987A due to pseudoscalar conversion. Phys. Rev. Lett. 77, 2372 (1996) [astro-ph/9606028]CrossRefADSGoogle Scholar
  30. 30.
    Csáaki, C., Kaloper, N., Terning, J.: (CKT II), Effects of the intergalactic plasma on supernova dimming via photon axion oscillations. Phys. Lett. B 535, 33 (2002) [hep-ph/0112212]CrossRefADSGoogle Scholar
  31. 31.
    Chen, P.: Resonant photon-graviton conversion and cosmic microwave background fluctuations. Phys. Rev. Lett. 74, 634 (1995); (E) ibid. 74, 3091 (1995)CrossRefADSGoogle Scholar
  32. 32.
    Mirizzi, A., Raffelt, G.G., Serpico, P.D.: Photon axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion. Phys. Rev. D 72, 023501 (2005) [astro-ph/0506078]CrossRefADSGoogle Scholar
  33. 33.
    Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., Wright, E.L.: The cosmic microwave background spectrum from the full COBE/FIRAS data set. Astrophys. J. 473, 576 (1996) [astro-ph/9605054]CrossRefADSGoogle Scholar
  34. 34.
    Mather, J.C., Fixsen, D.J., Shafer, R.A., Mosier, C., Wilkinson, D.T.: Calibrator design for the COBE far infrared absolute spectrophotometer (FIRAS). Astrophys. J. 512 (1999) 511 [astro-ph/9810373]CrossRefADSGoogle Scholar
  35. 35.
    Ostman, L., Mörtsell, E.: Limiting the dimming of distant type Ia supernovae. JCAP 0502, 005 (2005) [astro-ph/0410501]Google Scholar
  36. 36.
    Goobar, A., Mörtsell, E., Amanullah, R., Goliath, M., Bergström, L., Dahlen, T.: SNOC: a Monte-Carlo simulation package for high-z supernova observations. Astron. Astrophys. 392, 757 (2002) [astro-ph/0206409]CrossRefADSGoogle Scholar
  37. 37.
    Schneider, P., Ehlers, J., Falco, E.E.: Gravitational lenses. Springer-Verlag, Berlin (1992)Google Scholar
  38. 38.
    Bassett, B.A., Kunz, M.: Cosmic acceleration versus axion photon mixing. Astrophys. J. 607, 661 (2004) [astro-ph/0311495]CrossRefADSGoogle Scholar
  39. 39.
    Bassett, B.A., Kunz, M.: Cosmic distance-duality as a probe of exotic physics and acceleration. Phys. Rev. D 69, 101305 (2004) [astro-ph/0312443]CrossRefADSGoogle Scholar
  40. 40.
    Uzan, J.P., Aghanim, N., Mellier, Y.: The distance duality relation from hboxX-ray and Sunyaev-Zel’dovich observations of clusters. Phys. Rev. D 70, 083533 (2004) [astro-ph/0405620]CrossRefADSGoogle Scholar
  41. 41.
    Song, Y.S., Hu, W.: Constraints on supernovae dimming from photon-pseudo scalar coupling. Phys. Rev. D 73, 023003 (2006) [astro-ph/0508002]CrossRefADSGoogle Scholar
  42. 42.
    Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005) [astro-ph/0501171]CrossRefADSGoogle Scholar
  43. 43.
    Das, S., Jain, P., Ralston, J.P., Saha, R.: Probing dark energy with light: Propagation and spontaneous polarization. JCAP 0506, 002 (2005) [hep-ph/0408198]Google Scholar
  44. 44.
    Csáaki, C., Kaloper, N., Terning, J.: Exorcising w < –1. Annals Phys. 317, 410 (2005) [astro-ph/0409596]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alessandro Mirizzi
    • 1
  • Georg G. Raffelt1
    • 1
  • Pasquale D. Serpico
    • 2
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) FöhringerGermany
  2. 2.Center for Particle Astrophysics, Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations