Advertisement

Axions pp 83-94 | Cite as

Axions and Their Relatives

  • Eduard Massó
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

A review of the status of axions and axion-like particles is given. Special attention is devoted to the recent results of the PVLAS collaboration, which are in conflict with the CAST data and with the astrophysical constraints. Solutions to the puzzle and the implications for new physics are discussed. The question of axion-like particles being dark matter is also addressed.

Keywords

Dark Matter Cosmic Microwave Background Global Symmetry Light Particle Neutron Electric Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, C.A., et al.: An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006) [hep-ex/0602020]CrossRefADSGoogle Scholar
  2. 2.
    Peccei, R.D., Quinn, H.R.: CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977); Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791 (1977)CrossRefADSGoogle Scholar
  3. 3.
    Weinberg, S.: A new light boson?. Phys. Rev. Lett. 40, 223 (1978); Wilczek, F.: Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978)CrossRefADSGoogle Scholar
  4. 4.
    Kim, J.E.: Weak interaction singlet and strong CP invariance. Phys. Rev. Lett. 43, 103 (1979); Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Can confinement ensure natural CP invariance of strong interactions?. Nucl. Phys. B 166, 493 (1980)CrossRefADSGoogle Scholar
  5. 5.
    Dine, M., Fischler, W., Srednicki, M.: A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104, 199 (1981); Zhitnitsky, A.R.: On possible suppression of the axion hadron interactions. Sov. J. Nucl. Phys. 31, 260 (1980) [Yad. Fiz. 31, 497 (1980)]Google Scholar
  6. 6.
    Raffelt, G.G.: Stars as Laboratories for Fundamental Physics. Chicago nobreak University Press, Chicago (1996)Google Scholar
  7. 7.
    Ellis, J.R., Olive, K.A.: Constraints on light particles from supernova 1987A. Phys. Lett. B 193, 525 (1987); Raffelt G., Seckel, D.: Bounds on exotic particle interactions from SN 1987A. Phys. Rev. Lett. 60, 1793 (1988); Turner, M.S.: Axions from SN 1987A. Phys. Rev. Lett. 60, 1797 (1988)Google Scholar
  8. 8.
    Preskill, J., Wise, M.B., Wilczek, F.: Cosmology of the invisible axion. Phys. Lett. B 120, 127 (1983); Abbott, L.F., Sikivie, P.: A cosmological bound on the invisible axion. Phys. Lett. B 120, 133 (1983); Dine, M., Fischler, W.: The not-so-harmless axion. Phys. Lett. B 120, 137 (1983); Turner, M.S.: Cosmic and local mass density of ‘invisible’ axions. Phys. Rev. D 33, 889 (1986)CrossRefADSGoogle Scholar
  9. 9.
    Jaeckel, J., Massó, E., Redondo, J., Ringwald, A., Takahashi, F.: The need for purely laboratory-based axion-like particle searches. Phys. Rev. D 75, 013004 (2007) [hep-ph/0610203]CrossRefADSGoogle Scholar
  10. 10.
    Masso, E., Toldrá, R.: On a light spinless particle coupled to photons. Phys. Rev. D 52, 1755 (1995) [hep-ph/9503293]; New constraints on a light spinless particle coupled to photons. Phys. Rev. D 55, 7967 (997) [hep-ph/9702275]CrossRefADSGoogle Scholar
  11. 11.
    Kleban, M., Rabadán, R.: Collider bounds on pseudoscalars coupling to gauge bosons. [hep-ph/0510183]Google Scholar
  12. 12.
    Grifols, J.A., Masso, E., Toldra, R.: Gamma rays from SN1987A due to pseudoscalar conversion. Phys. Rev. Lett. 77, 2372 (1996) [astro-ph/9606028]; Brockway, J.W., Carlson, E.D., Raffelt, G.G.: SN 1987A gamma-ray limits on the conversion of pseudoscalars. Phys. Lett. B 383, 439 (1996) [astro-ph/9605197]CrossRefADSGoogle Scholar
  13. 13.
    Holman, R., Hsu, S.D.H., Kephart, T.W., Kolb, E.W., Watkins, R., Widrow, L.M.: Solutions to the strong CP problem in a world with gravity. Phys. Lett. B 282, 132 (1992) [hep-ph/9203206]; Kamionkowski, M., March-Russell, J.: Planck scale physics and the Peccei-Quinn mechanism. Phys. Lett. B 282, 137 (1992) [hep-th/9202003]; Barr, S.M., Seckel, D.: Planck scale corrections to axion models. Phys. Rev. D 46, 539 (1992)CrossRefADSGoogle Scholar
  14. 14.
    Sikivie, P.: Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415 (1983); (E) ibid. 52, 695 (1984)CrossRefADSGoogle Scholar
  15. 15.
    Zioutas, K., et al. (CAST Collaboration): First results from the CERN axion solar telescope (CAST). Phys. Rev. Lett. 94, 121301 (2005) [hep-ex/0411033]CrossRefADSGoogle Scholar
  16. 16.
    Maiani, L., Petronzio, R., Zavattini, E.: Effects of nearly massless, spin zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359 (1986)CrossRefADSGoogle Scholar
  17. 17.
    Zavattini, E., et al. (PVLAS Collaboration): Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 96, 110406 (2006) [hep-ex/0507107]CrossRefADSGoogle Scholar
  18. 18.
    Cantatore, G., Gastaldi, U.: private communicationGoogle Scholar
  19. 19.
    Cameron, R., et al.: Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 47, 3707 (1993)CrossRefADSGoogle Scholar
  20. 20.
    Masso, E., Redondo, J.: Evading astrophysical constraints on axion-like particles, JCAP 0509, 015 (2005) [hep-ph/0504202]; Jain, P., Mandal, S.: Evading the astrophysical limits on light pseudoscalars, [astro-ph/0512155]Google Scholar
  21. 21.
    Masso, E., Redondo, J.: Compatibility of CAST search with axion-like interpretation of PVLAS results Phys. Rev. Lett. 97, 151802 (2006) [hep-ph/0606163]CrossRefADSGoogle Scholar
  22. 22.
    Okun, L.B.: Limits of electrodynamics: paraphotons?. sov. Phys. JETP 56, 502 (1982) [Zh. Eksp. Teor. Fiz. 83, 892 (1982)]Google Scholar
  23. 23.
    Holdom, B.: Two Uĺs and epsilon charge shifts. Phys. Lett. B 166, 196 (1986); Searching for epsilon charges and a new U(1). Phys. Lett. B 178, 65 (1986)CrossRefADSGoogle Scholar
  24. 24.
    Mendonça, J.T., Dias de Deus, J., Castelo Ferreira, P.: Higher harmonics in non-linear vacuum from QED effects without low mass intermediate particles. Phys. Rev. Lett. 97, 100403 (2006) [hep-ph/0606099]; (E) ibid. 97, 269901 (2006)CrossRefGoogle Scholar
  25. 25.
    Adler, S.L.: Vacuum birefringence in a rotating magnetic field. J. Phys. A 40, F143 (2007) [hep-ph/0611267]zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Antoniadis, I., Boyarsky, A., Ruchayskiy, O.: Axion alternatives. [hep-ph/0606306]Google Scholar
  27. 27.
    Gies, H., Jaeckel, J., Ringwald, A.: Polarized light propagating in a magnetic field as a probe of millicharged fermions. Phys. Rev. Lett. 97, 140402 (2006). [hep-ph/0607118]Google Scholar
  28. 28.
    Masso, E., Rota, F., Zsembinszki, G.: Planck-scale effects on global symmetries: Cosmology of pseudo-Goldstone bosons. Phys. Rev. D 70, 115009 (2004) [hep-ph/0404289]CrossRefADSGoogle Scholar
  29. 29.
    Kallosh, R., Linde, A.D., Linde, D.A. Susskind, L.: Gravity and global symmetries. Phys. Rev. D 52, 912 (1995) [hep-th/9502069]CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eduard Massó
    • 1
  1. 1.Grup de Física Teórica and Institut de Física d’Altes EnergiesUniversitat Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations