Advertisement

Axions pp 199-237 | Cite as

Axion Searches in the Past, at Present, and in the Near Future

  • Rémy Battesti
  • Berta Beltrán
  • Hooman Davoudiasl
  • Markus Kuster
  • Pierre Pugnat
  • Raoul Rabadán
  • Andreas Ringwald
  • Neil Spooner
  • Konstantin Zioutas
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

Theoretical axion models state that axions are very weakly-interacting particles. In order to experimentally detect them, the use of colorful and inspired techniques become mandatory. There are a wide variety of experimental approaches that were developed during the last 30 years; most of them make use of the Primakoff effect, by which axions convert into photons in the presence of an electromagnetic field. We review the experimental techniques used to search for axions and will give an outlook on experiments planned for the near future.

Keywords

Solar Axion Large Hadron Collider Axion Search Time Projection Chamber Optical Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Panfilis, S., et al.: Limits on the abundance and coupling of cosmic axions at 4.5,umurm eV < M(A) < 5.0,umurm eV. Phys. Rev. Lett. 59, 839 (1987); Wuensch, W.U., et al.: Results of a laboratory search for cosmic axions and other weakly coupled light particles. Phys. Rev. D 40, 3153 (1989)CrossRefADSGoogle Scholar
  2. 2.
    Hagmann, C., Sikivie, P., Sullivan, N.S., Tanner, D.B.: Results from a search for cosmic axions. Phys. Rev. D 42, 1297 (1990)CrossRefADSGoogle Scholar
  3. 3.
    Asztalos, S.J., et al.: An improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004) [astro-ph/0310042]CrossRefADSGoogle Scholar
  4. 4.
    Tada, M., et al.: CARRACK II: A new large-scale experiment to search for axions with Rydberg-atom cavity detector. Nucl. Phys. Proc. Suppl. 72, 164 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Andriamonje S. [CAST Collaboration]: An improved limit on the axion - photon coupling from the CAST experiment. J. Cosmol. Astropart. Phys. 010 (2007), [hep-ex/0702006]Google Scholar
  6. 6.
    Bahcall, J.N., Pinsonneault, M.H.: What do we (not) know theoretically about solar neutrino fluxes. Phys. Rev. Lett. 92, 121301(1) (2004), [astro-ph/0402114]CrossRefADSGoogle Scholar
  7. 7.
    Sikivie, P.: Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415 (1983); (E) ibid. 52, 695 (1984)CrossRefADSGoogle Scholar
  8. 8.
    van Bibber, K., McIntyre, P.M., Morris, D.E., Raffelt, G.G.: A practical laboratory detector for solar axions. Phys. Rev. D 39, 2089 (1989)CrossRefADSGoogle Scholar
  9. 9.
    Lazarus, D.M., Smith, G.C., Cameron, R., Melissinos, A.C., Ruoso, G.,Semertzidis, Y.K., Nezrick, F.A.: A search for solar axions. Phys. Rev. Lett. 69, 2333 (1992)CrossRefADSGoogle Scholar
  10. 10.
    Moriyama, S., Minowa, M., Namba, T., Inoue, Y., Takasu, Y., Yamamoto, A.: Direct search for solar axions by using strong magnetic field and X-ray detectors. Phys. Lett. B 434, 147 (1998) [hep-ex/9805026]CrossRefADSGoogle Scholar
  11. 11.
    Inoue, Y., Namba, T., Moriyama, S., Minowa, M., Takasu, Y., Horiuchi, T., Yamamoto, A.: Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium. Phys. Lett. B 536, 18 (2002) [astro-ph/0204388]CrossRefADSGoogle Scholar
  12. 12.
    Zioutas, K., et al. [CAST Collaboration]: First results from the CERN axion solar telescope (CAST). Phys. Rev. Lett. 94 (2005) 121301 [hep-ex/0411033]CrossRefADSGoogle Scholar
  13. 13.
    Abbon, P., et al.: The Micromegas detector of the CAST experiment. New. J. Phys. 9 (2007) 170 [physics/0702190]CrossRefADSGoogle Scholar
  14. 14.
    Kuster, M., et al.: The X-ray Telescope of CAST. New. J. Phys. 9 (2007) 169 [physics/0702188]CrossRefADSGoogle Scholar
  15. 15.
    Autiero, D., et al.: The CAST time projection chamber. New. J. Phys. 9 (2007) 171 [physics/0702189]CrossRefADSGoogle Scholar
  16. 16.
    Raffelt, G.G.: Astrophysical axion bounds. [hep-ph/0611350]Google Scholar
  17. 17.
    Raffelt, G.G: Stars as Laboratories for Fundamental Physics. University of Chicago Press, Chicago (1996)Google Scholar
  18. 18.
    Paschos, E.A., Zioutas, K.: A proposal for solar axion detection via Bragg scattering. Phys. Lett. B 323, 367 (1994)CrossRefADSGoogle Scholar
  19. 19.
    Cebrían, S., et al.: Prospects of solar axion searches with crystal detectors. Astropart. Phys. 10, 397 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Bernabei, R., et al.: Performance of the 100,rm kg NaI(Tl) setup of the DAMA experiment at Gran Sasso. Nuovo Cim. 112, 545 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Morales, A., et al.[COSME Collaboration]: Particle dark matter and solar axion searches with a small germanium detector at the Canfranc underground laboratory. Astropart. Phys. 16, 325 (2002) [hep-ex/0101037]CrossRefADSGoogle Scholar
  22. 22.
    Avignone, F.T., et al. [SOLAX Collaboration]: Experimental search for solar axions via coherent Primakoff conversion in a germanium spectrometer. Phys. Rev. Lett. 81, 5068 (1998) [astro-ph/9708008]CrossRefADSGoogle Scholar
  23. 23.
    Bernabei, R., et al.: Search for solar axions by Primakoff effect in NaI crystals. Phys. Lett. B 515, 6 (2001)CrossRefADSGoogle Scholar
  24. 24.
    Davoudiasl, H., Huber, P.: Detecting solar axions using earth’s magnetic field. Phys. Rev. Lett. 97, 121302 (2006) [hep-ph/0509293]CrossRefGoogle Scholar
  25. 25.
    Landolt-Börnstein, New Series, Vol. 2b, it Geophysics of the Solid Earth, the Moon and the Planets, pp. 31–99, Springer, Berlin (1985)Google Scholar
  26. 26.
    Jahoda, K., et al.: Proc. SPIE Vol. 2808, p. 59–70, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, In: Siegmund, Oswald H., Gummin, Mark A. (eds.)Google Scholar
  27. 27.
    The Suzaku team, private communicationGoogle Scholar
  28. 28.
    Porter, F.S., the Suzaku Team (2005), urlhttp://www.astro.isas.ac.jp/suzaku/doc/suzaku_td/node9.htmlGoogle Scholar
  29. 29.
    Van Bibber, K., Dagdeviren, N.R., Koonin, S.E., Kerman, A., Nelson, H.N.: An experiment to produce and detect light pseudoscalars. Phys. Rev. Lett. 59, 759 (1987)CrossRefADSGoogle Scholar
  30. 30.
    Anselm, A.A.: Arion leftrightarrow Photon oscillations in a steady magnetic field. (In Russian), Yad. Fiz. 42, 1480 (1985)Google Scholar
  31. 31.
    Cameron, R., et al.: Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 47, 3707 (1993)CrossRefADSGoogle Scholar
  32. 32.
    Ringwald, A.: Axion interpretation of the PVLAS data? J. of Phys. Conf. Ser. 39, 197 (2005) [hep-ph/0511184]CrossRefADSGoogle Scholar
  33. 33.
    Maiani, L., Petronzio, R., Zavattini, E.: Effects of nearly massless, spin-zero particles on light propagation in a magnetic field. Phys. Lett. 175B, 359 (1986)ADSGoogle Scholar
  34. 34.
    Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 718 (1936); Weisskopf, V.S., Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Mat. Phys. Medd.-K. Dan. Vidensk. Selsk. 14, 6 (1936); Schwinger, J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)ADSGoogle Scholar
  35. 35.
    Adler, S.L.: Photon splitting and photon dispersion in a strong magnetic field. Annals Phys. 67, 599 (1971)CrossRefADSGoogle Scholar
  36. 36.
    Adler, S.L., et al.: Photon splitting in a strong magnetic field. Phys. Rev. Lett. 25, 1061 (1970)CrossRefADSGoogle Scholar
  37. 37.
    Gabrielli, E., et al.: Photon propagation in magnetic and electric fields with scalar/pseudoscalar couplings: new look. Phys. Rev. D74, 073002 (2006) [hep-ph/0604143]Google Scholar
  38. 38.
    Zavattini, E., et al. [PVLAS Collaboration]: Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 96, 110406 (2006) [hep-ex/0507107]CrossRefADSGoogle Scholar
  39. 39.
    Ehret, K., et al.: Production and detection of axion-like particles in a HERA dipole magnet: Letter-of-intent for the ALPS experiment. Letter of Intent [hep-ex/0702023]Google Scholar
  40. 40.
    Bailly, G., Battesti, R., Batut, S., Faure, S., Ganau, P., Mackowski, J.-M., Michel, C., Nardone, M., Pinard, L., Polizzi, L., Pinto Da Souza, B., Portugall, O., Remilleux, A., Rikken, G.L.J.A., Rizzo, C., Robillard, C., Trénec, G., Vigué, J.: [The BMV Collaboration]Google Scholar
  41. 41.
    Pugnat, P., et al.: Feasibility study of an experiment to measure the Vacuum Magnetic Birefringence. Czech J. of Phys. 55 A389 (2005) http://doc.cern.ch/archive/electronic/cern/preprints/at/at-2005-009.pdf; Pugnat. P., et al.: QED Test and Axion Search by means of Optical Techniques, Letter of Intent submitted to the CERN SPSC, CERN-SPSC-2005-034, 17 October 2005, http://doc.cern.ch//archive/electronic/cern/ preprints/spsc/public/spsc-2005-034.pdf; Pugnat, P., et al.: QED test and axion search in LHC superconducting dipoles by means of optical techniques. Czech J. of Phys. 56 C193 (2006);Google Scholar
  42. 42.
    Spergel, D.N., et al. (WMAP Collaboration): First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]CrossRefADSGoogle Scholar
  43. 43.
    DiLella, L., Zioutas, K.: Observational evidence for gravitationally trapped massive axion(-like) particles. Astropart. Phys. 19, 145 (2003) [astro-ph/0207073]CrossRefADSGoogle Scholar
  44. 44.
    Morgan, B., et al.: Searches for Kaluza-Klein axions with gas TPCs. Astropart. Phys. 23, 287 (2005)CrossRefADSGoogle Scholar
  45. 45.
    Morgan, B.: Dark matter detection with gas time projection chambers. The University of Sheffield – Department of Physics and Astronomy, PhD Thesis (2004)Google Scholar
  46. 46.
    Alner, G.J., et al.: The DRIFT-II dark matter detector: design and commissioning. Nucl. Instr. Meth. Phys. Res. A 555, 173 (2005)CrossRefADSGoogle Scholar
  47. 47.
    Kleban, M., Rabadán, R.: Collider bounds on pseudoscalars coupling to Gauge bosons. [hep-ph/0510183]Google Scholar
  48. 48.
    Hannestad, S., Mirizzi, A., Raffelt, G.: New cosmological mass limit on thermal relic axions. JCAP 0507, 002 (2005) [hep-ph/0504059]Google Scholar
  49. 49.
    Masso, E., Toldra, R.: On a light spinless particle coupled to photons. Phys. Rev. D 52, 1755 (1995) [hep-ph/9503293]CrossRefADSGoogle Scholar
  50. 50.
    Hearty, C., et al.: Search for the anomalous production of single photons in e+ e- annihilation at √s = 29,rm GeV. Phys. Rev. D 39, 3207 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rémy Battesti
    • 1
  • Berta Beltrán
    • 2
  • Hooman Davoudiasl
    • 3
  • Markus Kuster
    • 4
    • 5
  • Pierre Pugnat
    • 6
  • Raoul Rabadán
    • 7
  • Andreas Ringwald
    • 8
  • Neil Spooner
    • 9
  • Konstantin Zioutas
    • 6
    • 10
  1. 1.Laboratoire National des Champs Magnétiques PulsésCNRS/INSA/UPS UMR 5147 31400 ToulouseFrance
  2. 2.Department of PhysicsUniversity of Alberta 11322-89 Av Edmonton ABCanada
  3. 3.Department of Physics University of WisconsinMadisonUSA
  4. 4.Technische Universität DarmstadtIKP Schlossgartenstrasse 9 D-64289 DarmstadtGermany
  5. 5.Max-Planck-Institut für extraterrestrische PhysikGiessenbachstrasse D-85748GarchingGermany
  6. 6.European Organization for Nuclear Research(CERN) CH-1211 Genéve 23Switzerland
  7. 7.Institute for Advanced StudyEinstein DrivePrincetonNJ 08540USA
  8. 8.Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 HamburgGermany
  9. 9.University of Sheffeld, SheffeldUK
  10. 10.University of Patras, Rio, 26500 PatrasGreece

Personalised recommendations