Advertisement

Axions pp 3-17 | Cite as

The Strong CP Problem and Axions

  • Roberto D. Peccei
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

I describe how the QCD vacuum structure, necessary to resolve the U(1)_A problem, predicts the presence of a PabbrevPparity transformation, TabbrevTtime reversal transformation, and CPabbrevCPcharge conjugation transformation followed by party transformation violating term proportional to the vacuum angle θ. To agree with experimental bounds, however, this parameter must be very small (θ < 10-9). After briefly discussing some other possible solutions to this, so-called, strong CP problem, I concentrate on the chiral solution proposed by Peccei and Quinn which has associated with it a light pseudoscalar particle, the axion. I discuss in detail the properties and dynamics of axions, focusing particularly on invisible axion models where axions are very light, very weakly coupled, and very long-lived. Astrophysical and cosmological bounds on invisible axions are also briefly touched upon.

Keywords

Cold Dark Matter Wilkinson Microwave Anisotropy Probe Branch Ratio Invisible Axion Vacuum Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinberg, S.: The U(1) problem. Phys. Rev. D 11, 3583 (1975)CrossRefADSGoogle Scholar
  2. 2.
    ’t Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8 (1976)CrossRefADSGoogle Scholar
  3. 3.
    ’t Hooft, G.: Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432 (1976); (E) ibid. D 18, 2199 (1978)CrossRefADSGoogle Scholar
  4. 4.
    Adler, S.L.: Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969)CrossRefADSGoogle Scholar
  5. 5.
    Bell, J.S., Jackiw, R.: A PCAC puzzle: pi^0togammagamma in the sigma model. Nuovo Cim. A 60, 47 (1969)CrossRefADSGoogle Scholar
  6. 6.
    Bardeen, W.A.: Anomalous Ward identities in spinor field theories. Phys. Rev. 184, 1848 (1969)CrossRefADSGoogle Scholar
  7. 7.
    Bardeen, W.A.: Anomalous currents in gauge field theories. Nucl. Phys. B 75, 246 (1974)CrossRefADSGoogle Scholar
  8. 8.
    Callan, C.G., Dashen, R.F., Gross, D.J.: The structure of the gauge theory vacuum. Phys. Lett. B 63, 334 (1976)CrossRefADSGoogle Scholar
  9. 9.
    Crewther, R.J.: Effects of topological charge in gauge theories. Acta Phys. Austriaca Suppl. 19, 47 (1978)MathSciNetGoogle Scholar
  10. 10.
    Baluni, V.: CP violating effects in QCD. Phys. Rev. D 19, 2227 (1979)CrossRefADSGoogle Scholar
  11. 11.
    Crewther, R.J., Di Vecchia, P., Veneziano G., Witten, E.: Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics. Phys. Lett. B 88, 123 (1979); (E) ibid. B 91, 487 (1980)CrossRefADSGoogle Scholar
  12. 12.
    Baker, C.A., et al.: An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006) [hep-ex/0602020]Google Scholar
  13. 13.
    Jackiw, R., Rebbi, C.: Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett. 37, 172 (1976)CrossRefADSGoogle Scholar
  14. 14.
    Khlebnikov, S.Y., Shaposhnikov, M.E.: Extra space-time dimensions: Towards a solution to the strong CP problem. Phys. Lett. B 203, 121 (1988)CrossRefADSGoogle Scholar
  15. 15.
    Schierholz, G.: Towards a dynamical solution of the strong CP problem. Nucl. Phys. Proc. Suppl. 37A, 203 (1994) [hep-lat/9403012]CrossRefADSGoogle Scholar
  16. 16.
    B’eg, M.A.B., Tsao, H.S.B.: Strong P, T noninvariances in a superweak theory. Phys. Rev. Lett. 41, 278 (1978)CrossRefADSGoogle Scholar
  17. 17.
    Georgi, H.: A model of soft CP violation. Hadronic J. 1, 155 (1978)Google Scholar
  18. 18.
    Mohapatra, R.N., Senjanović, G.: Natural suppression of strong P and T noninvariance. Phys. Lett. B 79, 283 (1978)CrossRefADSGoogle Scholar
  19. 19.
    Zeldovich, Y.B., Kobzarev, I.Y., Okun, L.B.: Cosmological consequences of the spontaneous breakdown of discrete symmetry. Zh. Eksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys. JETP 40, 1 (1974)]ADSGoogle Scholar
  20. 20.
    Barr, S.M.: A natural class of non-Peccei-Quinn models. Phys. Rev. D 30, 1805 (1984)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Barr, S.M.: A survey of a new class of models of CP violation. Phys. Rev. D 34, 1567 (1986)CrossRefADSGoogle Scholar
  22. 22.
    Nelson, A.E.: Naturally weak CP violation. Phys. Lett. B 136, 387 (1984)CrossRefADSGoogle Scholar
  23. 23.
    Nelson, A.E.: Calculation of bartheta. Phys. Lett. B 143, 165 (1984)CrossRefADSGoogle Scholar
  24. 24.
    Kaplan, D.B., Manohar, A.V.: Current mass ratios of the light quarks. Phys. Rev. Lett. 56, 2004 (1986)CrossRefADSGoogle Scholar
  25. 25.
    Peccei, R.D., Quinn, H.R.: CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977)CrossRefADSGoogle Scholar
  26. 26.
    Peccei, R.D., Quinn, H.R.: Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791 (1977)CrossRefADSGoogle Scholar
  27. 27.
    Gasser, J., Leutwyler, H.: Quark masses. Phys. Rept. 87, 77 (1982)CrossRefADSGoogle Scholar
  28. 28.
    Weinberg, S.: A new light boson?. Phys. Rev. Lett. 40, 223 (1978)CrossRefADSGoogle Scholar
  29. 29.
    Wilczek, F.: Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978)CrossRefADSGoogle Scholar
  30. 30.
    Bardeen, W.A., Tye, S.H., Vermaseren, J.A.M.: Phenomenology of the new light Higgs boson search. Phys. Lett. B 76, 580 (1978)CrossRefADSGoogle Scholar
  31. 31.
    Bardeen, W.A., Peccei, R.D., Yanagida, T.: Constraints on variant axion models. Nucl. Phys. B 279, 401 (1987)CrossRefADSGoogle Scholar
  32. 32.
    Asano, Y., et al.: Search for a rare decay mode K^+topi^+nubarnu and axion. Phys. Lett. B 107, 159 (1981)CrossRefADSGoogle Scholar
  33. 33.
    Kim, J.E.: Weak interaction singlet and strong CP invariance. Phys. Rev. Lett. 43, 103 (1979)CrossRefADSGoogle Scholar
  34. 34.
    Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Can confinement ensure natural CP invariance of strong interactions?. Nucl. Phys. B 166, 493 (1980)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Dine, M., Fischler, W., Srednicki, M.: A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104, 199 (1981)CrossRefADSGoogle Scholar
  36. 36.
    Zhitnitsky, A.R.: On possible suppression of the axion hadron interactions. Sov. J. Nucl. Phys. 31, 260 (1980) [Yad. Fiz. 31, 497 (1980)]Google Scholar
  37. 37.
    Raffelt, G.G.: Stars as Laboratories for Fundamental Physics. Chicago University Press, Chicago (1996)Google Scholar
  38. 38.
    Turner, M.S.: Windows on the axion. Phys. Rept. 197, 67 (1990)CrossRefADSGoogle Scholar
  39. 39.
    Preskill, J., Wise, M.B., Wilczek, F.: Cosmology of the invisible axion. Phys. Lett. B 120, 127 (1983)CrossRefADSGoogle Scholar
  40. 40.
    Abbott, L.F., Sikivie, P.: A cosmological bound on the invisible axion. Phys. Lett. B 120, 133 (1983)CrossRefADSGoogle Scholar
  41. 41.
    Dine, M., Fischler, W.: The not-so-harmless axion. Phys. Lett. B 120, 137 (1983)CrossRefADSGoogle Scholar
  42. 42.
    Fox, P., Pierce, A., Thomas, S.D.: Probing a QCD string axion with precision cosmological measurements. [hep-th/0409059]Google Scholar
  43. 43.
    Spergel, D.N., et al.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007) [astro-ph/0603449]CrossRefADSGoogle Scholar
  44. 44.
    Peccei, R.D.: J. Korean Phys. Soc. 29, S199 (1996) [hep-ph/9606475]ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto D. Peccei
    • 1
  1. 1.Department of Physics and AstronomyUCLALos AngelesUSA

Personalised recommendations