Asymptotic Analysis and Observer Design in the Theory of Nonlinear Output Regulation

  • Alberto Isidori
  • Lorenzo Marconi
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 363)


The purpose of these notes is to summarize a number on recent developments in the theory of output regulation for nonlinear systems. Cornerstones of these developments are the asymptotic analysis leading to a precise notion of steady state response for nonlinear systems and a number of concepts arising in the theory of nonlinear observers. The steady state analysis is the tool of choice for the identification of necessary conditions, which make it possible to express in simple terms a new nonlinear enhancement of the classical internal model principle. The theory of nonlinear observers, on the other hand, provides the appropriate ideas for the design of regulators for a fairly general class of nonlinear systems that satisfy a suitable minimum-phase assumption. The ideas in question are instrumental in the design of “asymptotic internal models”, objects that serve the dual purpose of inducing a steady state in which the regulated variable vanishes and to make this steady state attractive.


Asymptotic Analysis Internal Model Observer Design Steady State Behavior Exogenous Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrieu, V., Praly, L.: On the existence of a Kazantis-Kravaris/Luenberger observer. SIAM Journal on Control and Optimization 45, 432–456 (2006)MathSciNetGoogle Scholar
  2. 2.
    Bastin, G., Gevers, M.R.: Stable adaptive observers for non-linear time varying systems. IEEE Transaction on Automatic Control 33, 650–657 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Birkhoff, G.D.: Dynamical Systems. American Mathematical Society (1927)Google Scholar
  4. 4.
    Byrnes, C.I., Isidori, A.: Asymptotic Stabilization of Minimum Phase Nonlinear Systems. IEEE Trans. Automatic Control 36, 1122–1137 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Byrnes, C.I., Isidori, A.: Limit Sets, Zero Dynamics and Internal Models in the Problem of Nonlinear Output Regulation. IEEE Transaction on Automatic Control 48, 1712–1723 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Byrnes, C.I., Isidori, A.: Nonlinear Internal Models for Output Regulation. IEEE Transaction on Automatic Control 49, 2244–2247 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Byrnes, C.I., Isidori, A.: The Steady-State Response of a Nonlinear System: Ideas, Tools and Applications. Preprint (2004)Google Scholar
  8. 8.
    Byrnes, C.I., Delli Priscoli, F., Isidori, A., Kang, W.: Structurally Stable Output Regulation of Nonlinear Systems. Automatica 33, 369–385 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, Z., Huang, J.: Global robust servomechanism problem of lower triangular systems in the general case. Systems and Control Letters 52, 209–220 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Delli Priscoli, F., Marconi, L., Isidori, A.: A New Approach to Adaptive Nonlinear Regulation. SIAM Journal on Control and Optimization 45, 829–855 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Francis, B.A.: The Linear Multivariable Regulator Problem. SIAM Journal on Control and Optimization 14, 486–505 (1977)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Francis, B.A., Wonham, W.M.: The Internal Model Principle of Control Theory. Automatica 12, 457–465 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gardner, M.F., Barnes, J.L.: Transients in Linear Systems. Wiley, Chichester (1942)zbMATHGoogle Scholar
  14. 14.
    Gauthier, J.P., Kupka, I.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  15. 15.
    Hahn, W.: Stability of Motions. Springer, Heidelberg (1967)Google Scholar
  16. 16.
    Hale, J.K., Magalhães, L.T., Oliva, W.M.: Dynamics in Infinite Dimensions. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  17. 17.
    Huang, J., Lin, C.F.: On a Robust Nonlinear Multivariable Servomechanism Problem. IEEE Transaction on Automatic Control 39, 1510–1513 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Isidori, A.: Nonlinear Control Systems. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  19. 19.
    Isidori, A., Marconi, L., Serrani, A.: Robust Autonomous Guidance: An Internal Model-based Approach. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alberto Isidori
    • 1
    • 2
  • Lorenzo Marconi
    • 2
  1. 1.DIS, Università di Roma “La Sapienza”Italy
  2. 2.CASY-DEIS, Università of BolognaItaly

Personalised recommendations