Nonlinear Moving Horizon Observers: Theory and Real-Time Implementation

  • Mazen Alamir
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 363)


In this chapter, the concept of Moving-Horizon Observer (MHO) is recalled and some related topics are discussed and illustrated through dedicated examples.


State Estimation Measurement Noise Model Predictive Control Nonlinear Observer State Estimation Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarado, I.A., Findeisen, R., Kuhl, P., Allgower, F., Limon, D.: State estimation for repetitive processes using iteratively improving moving horizon observers. In: Proceedings of the IFAC World Congress, Barcelona, Spain (2002)Google Scholar
  2. 2.
    Tornambè, A.: High gains observers for nonlinear systems. International Journal of Systems Science 23 (1992)Google Scholar
  3. 3.
    Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximation. IEEE Transactions on Automatic Control 48(2), 246–258 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Wang, G.B., Peng, S.S., Huang, H.: A sliding observer for nonlinear process control. Chemical Engineering Science 52 (1997)Google Scholar
  5. 5.
    Alacoque, J.C., Alamir, M.: Method and device for locating a vehicle on a road. Patent EP1211152, Alstom-Transport (2002),
  6. 6.
    Bassompierre, C., Li, S., Cadet, C.: Activated sludge processes state estimation: A nonlinear moving horizon observer approach. In: Proceedings of the American Control Conference, Minneapolis, Minnesota, USA (2006)Google Scholar
  7. 7.
    Kiparissides, C., Seferlis, P., Mourikas, G., Morris, A.J.: Online optimization control of molecular weight properties in batch free-radical polymerization reactors. Industrial Engineering and Chemistry Research 41 (2002)Google Scholar
  8. 8.
    Diehl, M., Findeisen, R., Allgöwer, F.: A stabilizing real-time implementation of nonlinear model predictive control. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloem Wanders, B. (eds.) Real-Time PDE Optimization, Springer, New York (2006)Google Scholar
  9. 9.
    Diehl, M., Findeisen, R., Nagy, Z., Bock, H.G., Schlöder, J.P., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Proc. Contr. 4(12), 577–585 (2002)CrossRefGoogle Scholar
  10. 10.
    Slotine, J.E., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. Journal of Dynamics Sysytems, Measurements and Control 109 (1987)Google Scholar
  11. 11.
    Michalska, H., Mayne, D.Q.: Moving-horizon observers and observer-based control. IEEE Transactions on Automatic Control 40, 995–1006 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Buruaga, I.S., Leiza, J.R., Asua, J.M.: Model-based control of emulsion terpolymerization based on calorimetric measurements. Polymer Reaction Engineering 8(1) (2000)Google Scholar
  13. 13.
    Calvillo-Corona, L., Alamir, M.: Towards the construction of robust optimal observers. In: Proceedings of the IFAC World Congress, Barcelona, Spain (2002)Google Scholar
  14. 14.
    Thomas, J.L., Latteux, P., Alacoque, J.C., Bornard, G., Alamir, M.: Method for estimating the velocity of a vehicle or an assembly of vehicles. Patent EP919814, Alcatel-Alstom Recherche (2002),
  15. 15.
    Alamir, M.: Optimization based nonlinear observers revisited. International Journal of Control 72(13), 1204–1217 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes: A Parametrized Approach for Fast Systems. Lecture Notes in Control and Information Sciences. Springer, London (2006)zbMATHGoogle Scholar
  17. 17.
    Alamir, M., Sheibat-Othman, N., Othman, S.: On the use of nonlinear receding-horizon observers in batch terpolymerization processes. Submitted to International Journal of Modelling, Identification and Control (2007)Google Scholar
  18. 18.
    Ascher, U.M.: Stabilization of invariants of discretized differential systems. Numerical Algorithms 14, 1–24 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Othman, N., McKenna, T.F., Févotte, G.: On-line monitoring of emulsion terpolymerization processes. Polymer Reaction Engineering 9(4) (2001)Google Scholar
  20. 20.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems – application to bio-reactors. IEEE Transactions on Automatic Control 37 (1992)Google Scholar
  21. 21.
    Aguilar-Lopez, R., Maya-Yescas, R.: State estimation for nonlinear systems under model uncertainties: a class of sliding-mode observers. Journal of Process Control 15 (2005)Google Scholar
  22. 22.
    BenAmor, S., Doyle, F.J., McFarlane, R.: Polymer grade transition control using advanced real-time optimization sofware. Journal of Process Control 14 (2004)Google Scholar
  23. 23.
    Ahmed-Ali, T., Lamnhabi-Lagarrigue, F.: Sliding observer-controller design for uncertain triangular nonlinear systems. IEEE Transactions on Automatic Control 44(6) (1999)Google Scholar
  24. 24.
    Ohtsuka, T., Fujii, H.A.: Nonlinear receding horizon state estimation by realtime optiization technique. J. Guidance, Control, Dynamics 19(4), 863–870 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mazen Alamir
    • 1
  1. 1.Centre National de la Recherche Scientifique (CNRS), GIPSA-Lab. Control Systems Department. SysCo-Team, BP 46, Rue de la Houille Blanche, Domaine Universitaire, 38400 Saint Martin d’HèresFrance

Personalised recommendations