Advertisement

Immersion-Based Observer Design

  • Alexandru Ţiclea
  • Gildas Besançon
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 363)

Contents

In this chapter we present immersion transformations of nonlinear systems for observer synthesis. A transformation through immersion is a generalization of an equivalence transformation to the extent that the dimension of the state space is not necessarily preserved. The immersion of a system for estimation purposes involves in fact the immersion (in the differential geometry sense) of the state space into a space of larger dimension, leading to a dynamical extension of the system.

Keywords

Nonlinear System Induction Motor Observer Design Load Torque Bilinear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Back, J., Seo, J.H.: Immersion of nonlinear systems into linear systems up to output injection: characteristic equation approach. International Journal of Control 77(8), 723–734 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Besançon, G., Ţiclea, A.: An immersion-based observer design for rank-observable nonlinear systems. IEEE Transactions on Automatic Control 52(1), 83–88 (2007)CrossRefGoogle Scholar
  3. 3.
    Besançon, G., Bornard, G., Hammouri, H.: Observer synthesis for a class of nonlinear control systems. European Journal of Control 3(1), 176–193 (1996)Google Scholar
  4. 4.
    Besançon, G.: On charactering classes of observer forms for nonlinear systems. In: Proceedings of European Control Conf (1997)Google Scholar
  5. 5.
    Besançon, G.: Further results on high gain observer for nonlinear systems. In: Proceedings of the 38th IEEE Conference on Decision and Control, pp. 2904–2909. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Academic Press, San Diego (2003)Google Scholar
  7. 7.
    Bornard, G., Celle-Couenne, F., Gilles, G.: Observabilité et observateurs. In: Fossard, A.J., Normand-Cyrot, D. (eds.) Systèmes Non Linéaires, vol. 1, Modélisation - Estimation, pp. 177–221. Masson (1993)Google Scholar
  8. 8.
    Bossane, D., Rakotopara, D., Gauthier, J.P.: Local and global immersion into linear systems up to output injection. In: Proceedings of the 28th IEEE Conference on Decision and Control, pp. 2000–2004. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  9. 9.
    Claude, D., Fliess, M., Isidori, A.: Immersion, directe et par bouclage, d’un système non linéaire dans un linéaire. Comptes Rendus des Séances de l’Académie de Sciences de Paris. Série 1, Mathématique 296(4), 237–240 (1983)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bulletin de la Société Mathématique de France 109, 3–40 (1981)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Fliess, M.: Finite-dimensional observation-spaces for nonlinear systems. In: Hinrichsen, D., Isidori, A. (eds.) Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol. 39, pp. 73–77. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  12. 12.
    Fliess, M., Kupka, I.: A finiteness criterion for nonlinear input-output differential systems. SIAM Journal of Control and Optimization 21(5), 721–728 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gauthier, J.P., Kupka, I.A.K.: Observability and observers for nonlinear systems. SIAM Journal on Control and Optimization 32(4), 975–994 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems — applications to bioreactors. IEEE Transactions on Automatic Control 37(6), 875–880 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hammouri, H., Celle, F.: Some results about nonlinear systems equivalence for the observer synthesis. In: Conte, G., Perdon, A.M., Wyman, B. (eds.) New Trends in Systems Theory. Progress in Systems and Control Theory, vol. 7, pp. 332–339. Birkhäuser, Basel (1991)Google Scholar
  16. 16.
    Hammouri, H., de Leon Morales, J.: Observer synthesis for state-affine systems. In: Proceedings of the 29th IEEE Conference on Decision and Control, pp. 784–785. IEEE Computer Society Press, Los Alamitos (1990)CrossRefGoogle Scholar
  17. 17.
    Hammouri, H., de Leon Morales, J.: On systems equivalence and observer synthesis. In: Conte, G., Perdon, A.M., Wyman, B. (eds.) New Trends in Systems Theory. Progress in Systems and Control Theory, vol. 7, pp. 340–347. Birkhäuser, Basel (1991)Google Scholar
  18. 18.
    Hermann, R., Krener, A.J.: Nonlinear controllability and observability. IEEE Transactions on Automatic Control 22(5), 728–740 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering, 3rd edn. Springer, London (1995)Google Scholar
  20. 20.
    Jouan, P.: Immersion of nonlinear systems into linear systems modulo output injection. SIAM Journal on Control and Optimization 41(6), 1756–1778 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Journal of Basic Engineering 83, 95–108 (1961)MathSciNetGoogle Scholar
  22. 22.
    Keller, H.: Nonlinear observer by transformation into a generalized observer canonical form. International Journal of Control 46(6), 1915–1930 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Krener, A.J., Isidori, A.: Linearization by output injection and nonlinear observers. Systems and Control Letters 3(1), 47–52 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Krener, A.J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM Journal on Control and Optimization 23(2), 197–216 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Levine, J., Marino, R.: Nonlinear system immersion, observers and finite-dimensional filters. Systems and Control Letters 7(2), 133–142 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Luenberger, D.G.: Observing the state of a linear system. IEEE Transactions on Military Electronics 8, 74–80 (1964)CrossRefGoogle Scholar
  27. 27.
    Ţiclea, A.: Techniques d’immersion pour l’estimation non linéaire. Application aux systèmes de puissance. PhD thesis, Institut National Polytechnique de Grenoble (2006)Google Scholar
  28. 28.
    Ţiclea, A., Besançon, G.: Observer scheme for state and parameter estimation in asynchronous motors with application to speed control. European Journal of Control 12(4), 400–412 (2006a)CrossRefGoogle Scholar
  29. 29.
    Ţiclea, A., Besançon, G.: Observer design for state and parameter estimation in induction motors with simulation and experimental validation. In: Proceedings of the 32nd Annual Conference of the IEEE Industrial Electronics Society, IEEE Computer Society Press, Los Alamitos (2006b)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alexandru Ţiclea
    • 1
  • Gildas Besançon
    • 2
  1. 1.Universitatea Politehnica BucureştiRomania
  2. 2.Control Systems Department (former Laboratoire d’Automatique de Grenoble), GIPSA-lab, ENSIEG, BP 46 38402 Saint-Martin d’HèresFrance

Personalised recommendations