Advertisement

Adaptive-Gain Observers and Applications

  • Nicolas Boizot
  • Eric Busvelle
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 363)

Contents

We distinguish two kinds of observers for nonlinear systems which are used by scientists and engineers: empirical observers and converging observers.

Keywords

Normal Form Canonical Form Load Torque Single Input Single Output Adaptive Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammar, S., Vivalda, J.-C.: On the genericity of the observability of controlled discrete-time systems. ESAIM: Control, Optimisation and Calculus of Variations 11, 161–179 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ammar, S., Vivalda, J.-C.: On the preservation of observability under sampling. Systems & Control Letters 52(1), 7–15 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Balde, M., Jouan, P.: Observability of control affine systems. ESAIM/COCV 3, 345–359 (1988)MathSciNetGoogle Scholar
  4. 4.
    Baras, J.S., Bensoussan, A., James, M.R.: Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math. 48, 1147–1158 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Binczak, S., Busvelle, E., Gauthier, J.P., Jacquir, S.: Identification of unknown functions in dynamic systems. In: 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006), Kyoto, pp. 2157–2162 (2006)Google Scholar
  6. 6.
    Binczak, S., Kazantsev, V., Nekorkin, V.I., Bilbault, J.M.: Experimental study of bifurcations in modified Fitzhugh-Nagumo cell. Electronic Letters 39(13), 961–962 (2003)CrossRefGoogle Scholar
  7. 7.
    Boizot, N., Busvelle, E., Gauthier, J.P., Sachau, J.: Adaptive-Gain Extended Kalman Filter: Application to a Series-Connected DC Motor. In: Conference on Systems and Control (CSC’2007), Marrakech (2007)Google Scholar
  8. 8.
    Busvelle, E., Gauthier, J.-P.: High-Gain and Non-High-Gain Observers for Nonlinear Systems, Contemporary Trends in Nonlinear Geometric Control Theory and its Applications, pp. 233–256. World Scientific, Singapore (2002)Google Scholar
  9. 9.
    Busvelle, E., Gauthier, J.-P.: Observation and Identification Tools for Nonlinear systems. Application to a Fluid Catalytic Cracker. International Journal of Control 78, 3 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Busvelle, E., Gauthier, J.-P.: On determining unknown functions in differential systems, with an application to biological reactors. ESAIM: COCV 9, 509–552 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Bucy, R., Joseph, P.: Filtering for stochastic processes with applications to guidance, 2nd edn. Chelsea publishing company (1987)Google Scholar
  12. 12.
    Busse, F.D., How, J.P., Simpson, J.: Demonstration of Adaptive Extended Kalman Filter for Low-earth-orbit Formation Estimation using CDGPS Navigation. Journal of the Institute of Navigation 50(2), 79–93 (2003)Google Scholar
  13. 13.
    Deza, F.: Contribution to the synthesis of exponential observers. Phd thesis, INSA de Rouen, France (June 1991)Google Scholar
  14. 14.
    Deza, F., Busvelle, E., Gauthier, J.-P.: High-gain estimation for nonlinear systems. Systems and Control Letters 18, 295–299 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Deza, F., Busvelle, E., Gauthier, J.-P., Rakotopara, D.: A stability result on the continuous-continuous and continuous-discret extended Kalman filters. Compte-Rendus de l’Académie des Sciences de Paris 314 (1992)Google Scholar
  16. 16.
    Gauthier, J.-P., Hammouri, H., Kupka, I.: Observers for nonlinear systems; IEEE CDC Conference, Brighton, England, December 1991, pp. 1483–1489 (1991)Google Scholar
  17. 17.
    Gauthier, J.-P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems. IEEE Trans. Aut. Control 37, 875–880 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gauthier, J.P., Kupka, I.: Observability and observers for nonlinear systems. SIAM Journal on Control 32(4), 975–994 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gauthier, J.P., Kupka, I.: Observability for systems with more outputs than inputs. Mathematische Zeitschrift 223, 47–78 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gauthier, J.-P., Kupka, I.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  21. 21.
    Gikhman, I.I., Skorokhod, A.V.: Introduction to the Theory of Random Processes. W.B. Saunders, Philadelphia (1969)Google Scholar
  22. 22.
    Gevers, M., Bastin, G.: A Stable Adaptive Observer for a class of Nonlinear Second-order Systems. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and optimization of systems, pp. 143–155. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  23. 23.
    Hammouri, H., Farza, M.: Nonlinear observers for locally uniformly observable systems. COCV 9, 343–352 (2003)MathSciNetGoogle Scholar
  24. 24.
    Hodgkin, L.A., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of phisiology 117, 500–544 (1952)Google Scholar
  25. 25.
    Holland, C.D.: Multicomponent Distillation. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  26. 26.
    Hu, C., Chen, W., Chen, Y., Liu, D.: Adaptive Kalman filtering for vehicle navigation. Journal of Global Positioning Systems 2(1), 42–47 (2003)Google Scholar
  27. 27.
    Huillet, T., Salut, G.: Interprétation des équations du filtrage non linéaire. GdR Automatique du CNRS, Paris, 8 Novembre (1989)Google Scholar
  28. 28.
    Jacquir, S.: Systèmes dynamiques non-linéaires, de la biologie à l’électronique. Thèse de doctorat, Université de Bougogne, France (2006)Google Scholar
  29. 29.
    Jaswinski, A.: Stochastic processes and filtering theory. Academic Press, New York (1970)Google Scholar
  30. 30.
    Johansson, A., Medvedev, A.: An observer for systems with nonlinear output map. Automatica 39, 909–918 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Jouan, P.: Singularités des systèmes non linéaires, observabilité et observateurs. PHD thesis, Université de Rouen (1995)Google Scholar
  32. 32.
    Jouan, P., Gauthier, J.P.: Finite singularities of nonlinear systems. Output stabilization, observability and observers. Journal of Dynamical and Control Systems 2(2), 255–288 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Kent, K.C., Yu, N.R., Watson, J.: Arrillaga, An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking. IEEE Trans. on power delivery 20(2) (2005)Google Scholar
  34. 34.
    Krause, P.C., Wasunczuk, O., Sudhoff, S.D.: Analysis of Electric Machinery and Drive Systems, 2nd edn. IEEE series on power engineering. Wiley-interscience, Chichester (2002)Google Scholar
  35. 35.
    La Moyne, L., Porter, L.L., Passino, K.M.: Genetic adaptive observers. Engng Applic. Artif. Intell. 8(3), 261–269 (1995)CrossRefGoogle Scholar
  36. 36.
    Mehta, S., Chiasson, J.: Nonlinear Control of a Series DC Motor: Theory and Experiment. IEEE transactions on industrial electronics 45, 1 (1998)CrossRefGoogle Scholar
  37. 37.
    Pardoux, E.: Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. In: Ecole d’Eté de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Mathematics, vol. 1464, pp. 67–163. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  38. 38.
    Picard, J.: Efficiency of the extended Kalman filter for nonlinear systems with small noise. SIAM J. Appl. Math. 51(3), 843–885 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Rigal, G.: Filtrage non-linéaire, résolution particulaire et applications au traitement du signal, Thèse de l’Université de Toulouse, LAAS (1993)Google Scholar
  40. 40.
    Rosenbrock, H.: A Lyapunov function with applications to some nonlinear physical systems. Automatica 1, 31–53 (1962)CrossRefGoogle Scholar
  41. 41.
    Ropuchon, P.: Simulation dynamique et commande non linéaire des colonnes à distiller, Thèse de l’école des mines de Paris (1990)Google Scholar
  42. 42.
    Shen, L., Wang, H.: Adaptive observer design for general nonlinear systems with linear output structure. In: 4th International Conference on Control and Automation, ICCA ’03, Proceedings, June 2003, pp. 48–52 (2003)Google Scholar
  43. 43.
    Shim, H., Son, Y.I., Seo, J.H.: Semi-global observer for multi-output nonlinear systems. Systems Control Lett 42, 233–244 (2001)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Stubberud, S., Lobbia, R., Owen, M.: An adaptive extended Kalman filter using artificial neural networks. The international journal on smart system design 1, 207–221 (1998)Google Scholar
  45. 45.
    Viel, F.: Stabilité des systèmes non linéaires controlés par retour d’état estimé. Application aux réacteurs de polymérisation et aux colonnes à distiller, Thèse de l’université de Rouen (1994)Google Scholar
  46. 46.
    Viel, F., Busvelle, E., Gauthier, J.P.: A stable control structure for binary distillation columns. International Journal on Control 67(4), 475–505 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Nicolas Boizot
    • 1
  • Eric Busvelle
    • 2
  1. 1.LASSY, Université du Luxembourg, 6 rue Coudenhove Kalergi, L-1359Luxembourg
  2. 2.LE2I, IUT d’Auxerre, Route des plaines de l’Yonne, 89000 AuxerreFrance

Personalised recommendations