Advertisement

Uniform Observability and Observer Synthesis

  • Hassan Hammouri
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 363)

Contents

The single input observability is the practical observability notion that can be used for the state and parameter estimation. A system is single input observable if there exists an input which distinguishes any different initial states (see chapter 1). Such inputs are called universal inputs. For analytic systems the observability is equivalent to the single input observability (see [19]). For nonlinear systems, even if the system is single input observable, it may admit an input which renders it unobservable. However, for stationary linear systems, the single observability doesn’t depend on the input and can be characterized using a Brunowsky canonical form [21]. The property that the single input observability doesn’t depend on the input will be called the uniform observability. As for stationary linear systems, canonical forms can be designed in order to characterize some class of uniformly observable nonlinear systems.

Keywords

Canonical Form Observable System Nonlinear Observer MIMO Nonlinear System Stationary Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bornard, G., Hammouri, H.: A high gain observer for a class of uniformly observable systems. In: Proc. 30th IEEE Conference on Decision and Control, Brighton. Lecture Notes in Control and Information Science, vol. 122, pp. 176–192. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  2. 2.
    Deza, F., Busvelle, E., Gauthier, J.P.: Exponentially converging observers for distillation columns and internal stability of the dynamic output feedback. Chemical Engineering Science 47(15–16), 3935–3941 (1992)CrossRefGoogle Scholar
  3. 3.
    Gauthier, J.P., Bornard, G.: Observability for any u(t) of a class of nonlinear systems. IEEE Trans. on Aut. Control 26, 922–926 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems - Application to bioreactors. IEEE Trans. on Aut. Control 37, 875–880 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gauthier, J.P., Kupka, I.A.K.: Observability and observers for nonlinear systems. SIAM J. Control. Optim. 32, 975–994 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gauthier, J.P., Kupka, I.A.K.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  7. 7.
    Hammouri, H., Kinnaert, M., Kabore, P.: A differential geometric approach to fault detection and isolation for state affine systems. In: 39th IEEE Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  8. 8.
    Hammouri, H., Gauthier, J.P.: Bilinearization up to output injection. Systems & Control Letters 11, 139–149 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hammouri, H., Gauthier, J.P.: Global time-varying linearization up to output injection. SIAM J. Control. Optim. 30, 1295–1310 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hammouri, H., Gauthier, J.P.: Bilinearization up to output injection. Systems & Control Letters 11, 139–149 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hammouri, H., Gauthier, J.P.: Global time-varying linearization up to output injection. SIAM J. Control. Optim. 30, 1295–1310 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hammouri, H., Farza, M.: Nonlinear observer for locally uniformly observable systems. ESAIM Control, Optimisation and Calculus of Variations SAIM Control, Optimisation and Calculus of Variations 9, 353–370 (2003)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hermann, R., Krener, A.J.: Nonlinear Controllability and Observability. IEEE Trans. on Aut. Control 22, 728–740 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. of Basic Engineering, 95–108 (1961)Google Scholar
  15. 15.
    Kazantzis, N., Kravaris, C.: Time scaling for observer design with linearization erro dynamics. Systems and Control Letters 34, 241–247 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Krener, A.J.: Conditoned invariant and locally conditined invariant distributions. Systems and control letters 8, 69–74 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krener, A.J., Isidori, A.: Linearization by output injection and nonlinear observers. Syst. and Control Letters 3, 47–52 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Krener, A.J., Respondek, W.: Nonlinear observers with linealizable error dynamics. SIAM J. Control. Optim. 23, 197–216 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sussman, H.J.: Single-Input observability of continuous-time systems. Math. System Theory 12, 371–393 (1979)CrossRefGoogle Scholar
  20. 20.
    Williamson, D.: Observability of bilinear systems, with application to biological control. Automatica 32, 143–254 (1977)Google Scholar
  21. 21.
    Wonham, W.M.: Linear Multivariable Control - A geometric approach. Springer, New York (1985)zbMATHGoogle Scholar
  22. 22.
    Xia, X.H., Gao, W.B.: Nonlinear observer design by observer error linearization. SIAM J. Control and Opt. 27, 199–216 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hassan Hammouri
    • 1
  1. 1.LAGEP UMR CNRS 5007, Université Claude Bernard Lyon 1 

Personalised recommendations