Advertisement

An Overview on Observer Tools for Nonlinear Systems

  • Gildas Besançon
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 363)

Contents

The problem of observer design naturally arises in a system approach, as soon as one needs some internal information from external (directly available) measurements. In general indeed, it is clear that one cannot use as many sensors as signals of interest characterizing the system behavior (for cost reasons, technological constraints, etc.), especially since such signals can come in a quite large number, and they can be of various types: they typically include time-varying signals characterizing the system (state variables), constant ones (parameters), and unmeasured external ones (disturbances).

Keywords

Nonlinear System Observer Design Observable System Nonlinear Observer Slide Mode Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alamir, M.: Optimization-based nonlinear observers revisited. Int. Journal of Control 72(13), 1204–1217 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arcak, M., Kokotović, P.: Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12), 1923–1930 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barbot, J.P., Boukhobza, T., Djemai, M.: Sliding mode observer for triangular input form. In: Proc. 35th IEEE Conf. on Decision and Control, Kobe, Japan, pp. 1489–1490. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  4. 4.
    Besançon, G.: Further results on high gain observers for nonlinear systems. In: Proc. 38th IEEE Conf. on Decision and Control, Phoenix, USA, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  5. 5.
    Besançon, G.: On output transformations for state linearization up to output injections of nonlinear systems. IEEE Trans. on Automatic Control 44(11), 1975–1981 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Besançon, G.: A viewpoint on observability and observer design for nonlinear systems. In: Nijmeijer, H., Fossen, T. (eds.) New Directions in Nonlinear Observer Design. Lecture Notes in Control and Information Science, vol. 244, pp. 2–21. Springer, London (1999)CrossRefGoogle Scholar
  7. 7.
    Besançon, G.: Observer design for nonlinear systems. In: Loría, A., Lamnabhi-Lagarrigue, F., Panteley, E. (eds.) Advanced topics in control systems theory. Lecture Notes in Control and Information Science, vol. 328, pp. 61–89. Springer, London (2006)CrossRefGoogle Scholar
  8. 8.
    Besançon, G., Bornard, G.: State equivalence based observer design for nonlinear control systems. In: Proc. of IFAC World Congress, San Francisco, CA, USA, pp. 287–292 (1996)Google Scholar
  9. 9.
    Besançon, G., Bornard, G.: On charactering classes of observer forms for nonlinear systems. In: Proc. 4th European Control Conf., Brussels, Belgium (1997)Google Scholar
  10. 10.
    Besançon, G., Bornard, G., Hammouri, H.: Observer synthesis for a class of nonlinear control systems. European J. of Control 3(1), 176–193 (1996)Google Scholar
  11. 11.
    Besançon, G., Ţiclea, A.: Immersion-based observer design for rank-observable nonlinear systems. IEEE Trans. on Automatic Control 52(1), 83–88 (2007)CrossRefGoogle Scholar
  12. 12.
    Besançon, G., Hammouri, H.: On uniform observation of non-uniformly observable systems. Systems & Control Letters 33(1), 1–11 (1996)CrossRefGoogle Scholar
  13. 13.
    Besançon, G., Hammouri, H.: On observer design for interconnected systems. Journal of Math. Systems, Estimation and Control 8(3) (1998)Google Scholar
  14. 14.
    Bestle, D., Zeitz, M.: Canonical form observer design for nonlinear time-variable systems. Int. Journal of Control 38(2), 419–431 (1983)zbMATHCrossRefGoogle Scholar
  15. 15.
    Bornard, G., Celle-Couenne, F., Gilles, G.: Observability and observers. In: Nonlinear Systems - T.1, Modeling and Estimation, pp. 173–216. Chapman & Hall, London (1995)Google Scholar
  16. 16.
    Bornard, G., Couenne, N., Celle, F.: Regularly persistent observer for bilinear systems. In: New Trends in Nonlinear Control Theory. Lecture Notes in Control and Information Science, vol. 122, pp. 130–140. Springer, Berlin (1988)CrossRefGoogle Scholar
  17. 17.
    Bornard, G., Hammouri, H.: A high gain observer for a class of uniformly observable systems. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton, England, Dec 1991, pp. 1494–1496. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  18. 18.
    Bornard, G., Hammouri, H.: A graph approach to uniform observability of nonlinear multi output systems. In: 40th IEEE Conf. on Decision and Control, Las Vegas, USA, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  19. 19.
    Conte, G., Moog, C., Perdon, A.: Nonlinear control systems: an algebraic setting. Springer, Berlin (1999)zbMATHGoogle Scholar
  20. 20.
    Deza, F., Bossanne, D., Busvelle, E., Gauthier, J.P., Rakotopara, D.: Exponential observers for nonlinear systems. IEEE Trans. on Automatic Control 38(3), 482–484 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Drakunov, S., Utkin, V.: Sliding mode observers. tutorial. In: Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, USA, pp. 3376–3378. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  22. 22.
    Fliess, M., Kupka: A finiteness criterion for nonlinear input-output differential systems. Siam Journal on Control and Optimization 21(5), 721–728 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gauthier, J.P., Bornard, G.: Observability for any u(t) of a class of nonlinear systems. IEEE Trans. on Automatic Control 26(4), 922–926 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems - applications to bioreactors. IEEE Trans. on Automatic Control 37(6), 875–880 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gauthier, J.P., Kupka, A.K.: Observability and observers for nonlinear systems. Siam Journal on Control and Optimization 32(4), 975–994 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gauthier, J.P., Kupka, A.K.: Deterministic observation theory and applications. Cambridge University Press, Cambridge (1997)Google Scholar
  27. 27.
    Gelb, A.: Applied optimal estimation. MIT Press, Cambridge (1992)Google Scholar
  28. 28.
    Glumineau, A., Moog, C., Plestan, F.: New algebraic-geometric conditions for the linearization by input-output injection. IEEE Trans. on Automatic Control 41(4), 598–603 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Hammouri, H., Celle, F.: Some results about nonlinear systems equivalence for the observer synthesis. In: New Trends in Systems Theory, pp. 332–339. Birkhäuser, Basel (1991)Google Scholar
  30. 30.
    Hammouri, H., Gauthier, J.P.: Bilinearization up to output injection. Systems & Control Letters 11, 139–149 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hammouri, H., Kinnaert, M.: A new formulation for time-varying linearization up to output injection. Systems & Control Letters 28, 151–157 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hammouri, H., De Leon Morales, J.: Observer synthesis for state-affine systems. In: Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HA, USA, pp. 784–785. IEEE Computer Society Press, Los Alamitos (1990)CrossRefGoogle Scholar
  33. 33.
    Hermann, R., Krener, A.J.: Nonlinear controllability and observability. IEEE Trans. on Automatic Control 22(5), 728–740 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, Berlin (1995)zbMATHGoogle Scholar
  35. 35.
    Jouan, P.: Immersion of nonlinear systems into linear systems modulo output injection. Siam Journal on Control and Optimization 41, 1756–1778 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. 83, 95–108 (1961)MathSciNetGoogle Scholar
  37. 37.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  38. 38.
    Krener, A.J., Isidori, A.: Linearization by output injection and nonlinear observers. Systems & Control Letters 3, 47–52 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Krener, A.J., Respondek, W.: Nonlinear observers with linearizable error dynamics. Siam Journal on Control and Optimization 23(2), 197–216 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972)zbMATHGoogle Scholar
  41. 41.
    Lévine, J., Marino, R.: Nonlinear systems immersion, observers and finite dimensional filters. Systems & Control Letters 7, 137–142 (1986)CrossRefGoogle Scholar
  42. 42.
    Luenberger, D.G.: Observers for multivariable systems. IEEE Trans. on Automatic Control 11(2), 190–197 (1966)CrossRefGoogle Scholar
  43. 43.
    Michalska, H., Mayne, D.Q.: Moving horizon observers and observer-based control. IEEE Trans. on Automatic Control 40(6), 995–1006 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Moreno, J.: Observer design for nonlinear systems: a dissipative approach. In: IFAC Symp. Systems Structure and Control, Oaxaca, Mex (2004)Google Scholar
  45. 45.
    Rudolph, J., Zeitz, M.: A block triangular nonlinear observer normal form. Systems & Control Letters 23, 1–8 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Sussmann, H.J.: Single input observability of continuous time systems. Math. Systems Theory 12, 371–393 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Zimmer, G.: State observation by on-line minimization. Int. Journal of Control 60(4), 595–606 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gildas Besançon
    • 1
  1. 1.Control Systems Department (former Laboratoire d’Automatique de Grenoble), GIPSA-lab. ENSIEG BP 46, 38402 Saint-Martin d’HèresFrance

Personalised recommendations