Skip to main content

Comparing State-of-the-Art Collaborative Filtering Systems

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4571))

Abstract

Collaborative filtering aims at helping users find items they should appreciate from huge catalogues. In that field, we can distinguish user-based, item-based and model-based approaches. For each of them, many options play a crucial role for their performances, and in particular the similarity function defined between users or items, the number of neighbors considered for user- or item-based approaches, the number of clusters for model-based approaches using clustering, and the prediction function used.

In this paper, we review the main collaborative filtering methods proposed in the litterature and compare them on the same widely used real dataset called MovieLens, and using the same widely used performance measure called Mean Absolute Error (MAE). This study thus allows us to highlight the advantages and drawbacks of each approach, and to propose some default options that we think should be used when using a given approach or designing a new one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17, 734–749 (2005)

    Article  Google Scholar 

  2. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Conference on Computer Supported Cooperative Work, pp. 175–186. ACM Press, New York (1994)

    Google Scholar 

  3. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 5–53 (2004)

    Article  Google Scholar 

  4. McNee, S., Riedl, J., Konstan, J.: Being accurate is not enough: How accuracy metrics have hurt recommender systems. In: Extended Abstracts of the 2006 ACM Conference on Human Factors in Computing Systems, ACM Press, New York (2006)

    Google Scholar 

  5. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating word of mouth. In: ACM Conference on Human Factors in Computing Systems, vol. 1, pp. 210–217 (1995)

    Google Scholar 

  6. Weng, J., Miao, C., Goh, A., Shen, Z., Gay, R.: Trust-based agent community for collaborative recommendation. In: 5th International Joint Conference on Autonomous Agents and Multiagent Systems (2006)

    Google Scholar 

  7. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufman, San Francisco (1998)

    Google Scholar 

  8. Pennock, D., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In: 16th Conference on Uncertainty in Artificial Intelligence, pp. 473–480 (2000)

    Google Scholar 

  9. Kleinberg, J., Sandler, M.: Using mixture models for collaborative filtering. In: 36th ACM Symposium on Theory Of Computing, pp. 569–578. ACM Press, New York (2004)

    Google Scholar 

  10. Kelleher, J., Bridge, D.: Rectree centroid: An accurate, scalable collaborative recommender. In: Cunningham, P., Fernando, T., Vogel, C. (eds.) 14th Irish Conference on Artificial Intelligence and Cognitive Science, pp. 89–94 (2003)

    Google Scholar 

  11. Rashid, A.M., Lam, S.K., Karypis, G., Riedl, J.: ClustKNN: A highly scalable hybrid model- & memory-based CF algorithm. In: KDD Workshop on Web Mining and Web Usage Analysis (2006)

    Google Scholar 

  12. Domeniconi, C., Papadopoulos, D., Gunopulos, D., Ma, S.: Subspace clustering of high dimensional data. In: SIAM International Conference on Data Mining (2004)

    Google Scholar 

  13. Candillier, L., Tellier, I., Torre, F., Bousquet, O.: SSC: Statistical Subspace Clustering. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 100–109. Springer, Heidelberg (2005)

    Google Scholar 

  14. Ungar, L., Foster, D.: Clustering methods for collaborative filtering. In: Workshop on Recommendation Systems, AAAI Press, Stanford, California (1998)

    Google Scholar 

  15. O’Conner, M., Herlocker, J.: Clustering items for collaborative filtering. In: ACM SIGIR Workshop on Recommender Systems, ACM Press, New York (1999)

    Google Scholar 

  16. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–167. ACM Press, New York (2000)

    Chapter  Google Scholar 

  17. Lin, W., Alvarez, S., Ruiz, C.: Efficient adaptive-support association rule mining for recommender systems. In: Data Mining and Knowledge Discovery, vol. 6, pp. 83–105 (2002)

    Google Scholar 

  18. Karypis, G.: Evaluation of item-based top-N recommendation algorithms. In: 10th International Conference on Information and Knowledge Management, pp. 247–254 (2001)

    Google Scholar 

  19. Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: 10th International World Wide Web Conference (2001)

    Google Scholar 

  20. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Transactions on Information Systems 22, 143–177 (2004)

    Article  Google Scholar 

  21. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13, 393–408 (1999)

    Article  Google Scholar 

  22. Vozalis, M., Margaritis, K.G.: Enhancing collaborative filtering with demographic data: The case of item-based filtering. In: 4th International Conference on Intelligent Systems Design and Applications, pp. 361–366 (2004)

    Google Scholar 

  23. NetflixPrize (2006), http://www.netflixprize.com/

  24. Yu, K., Xu, X., Tao, J., Ester, M., Kriegel, H.: Instance selection techniques for memory-based collaborative filtering. In: SIAM Data Mining (2002)

    Google Scholar 

  25. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4, 133–151 (2001)

    Article  MATH  Google Scholar 

  26. Vozalis, M., Margaritis, K.: Applying SVD on item-based filtering. In: 5th International Conference on Intelligent Systems Design and Applications, pp. 464–469 (2005)

    Google Scholar 

  27. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Candillier, L., Meyer, F., Boullé, M. (2007). Comparing State-of-the-Art Collaborative Filtering Systems. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2007. Lecture Notes in Computer Science(), vol 4571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73499-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73499-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73498-7

  • Online ISBN: 978-3-540-73499-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics