Skip to main content

Mass measurements in the endpoint region of the rp-process at SHIPTRAP

  • Conference paper
TCP 2006

Abstract

The Penning-trap mass spectrometer SHIPTRAP was designed for precision mass measurements of radionuclides produced in fusion-evaporation reactions. The latest measurement campaign covered heavy nuclei (A > 90) related to the astrophysical rapid proton capture process. The masses of 34 neutron-deficient radionuclides have been measured since February 2006 with relative uncertainties between 5 × 10-8 and 1 × 10-7. Furthermore, the use of an octupolar RF excitation for the time-of-flight ion-cyclotron-resonance technique was investigated and an increase of the resolving power by a factor of ten was observed in agreement with simulations. This will allow to resolve isomeric states with excitation energies of a few 10 keV only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lunney, D., Pearson, J.M., Thibault, C.: Rev. Mod. Phys. 75, 1021 (2003)

    Article  ADS  Google Scholar 

  2. Schatz, H.: Int. J. Mass Spectrom. 251, 293 (2006)

    Article  ADS  Google Scholar 

  3. Hardy, J.C., Towner, LS.: Phys. Rev., C 71, 055501 (2005)

    Article  ADS  Google Scholar 

  4. Brown, L.S., Gabriebe, G.: Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  5. Blaum, K.: Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  6. Schweikhard, L., Bolien, G. (eds.): Int. J. Mass Spectrom. 251 (2/3), (2006)

    Google Scholar 

  7. Neumayr, J., et al.: Nucl. Instrum. Methods, B 244, 489 (2005)

    Article  ADS  Google Scholar 

  8. Weissman, L., et al.: Nucl. Phys., A 746, 655c (2004)

    Article  ADS  Google Scholar 

  9. Herfurth, F.: Nucl. Instrum. Methods, B 204, 587 (2003)

    Article  ADS  Google Scholar 

  10. Ringle, R., et al.: Int. J. Mass Spectrom. 251, 300 (2006)

    Article  ADS  Google Scholar 

  11. Savard, G., et al.: Int. J. Mass Spectrom. 251, 252 (2006)

    Article  ADS  Google Scholar 

  12. Jokinen, A., et al.: Int. J. Mass Spectrom. 251, 204 (2006)

    Article  ADS  Google Scholar 

  13. Dilling, J., et al.: Hyperfine interact. 127, 491 (2000)

    Article  ADS  Google Scholar 

  14. Hofmann, S., Mün zenberg, G.: Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  15. Graeff, G., et al.: Z. Phys. 222, 201 (1969)

    Article  ADS  Google Scholar 

  16. Graeff, G., et al.: Z. Phys. 297, 35–39 (1980)

    Article  ADS  Google Scholar 

  17. Schatz, H., et al.: Phys. Rep. 2, 167 (1998) (and references therein)

    Article  ADS  Google Scholar 

  18. Schatz, H., et al.: Phys. Rev. Lett. 68. 3471 (2001)

    Article  ADS  Google Scholar 

  19. Audi, G., Bersillon, O., Blachot, J., Wapstra, A.H., Thibault, G: Nucl. Phys., A 729, 3 (2003)

    Article  ADS  Google Scholar 

  20. Thoennessen, M.: Rep. Prog. Phys. 67, 1187 (2004)

    Article  ADS  Google Scholar 

  21. Kön ig, M., et al.: Int. J. Mass Spectrom. ion Process. 142, 95–116 (1995)

    Article  ADS  Google Scholar 

  22. Vorobjev, G., et al.: In: Proc. of Science (NIC-IX)208, (2006)

    Google Scholar 

  23. Schatz, H., et al.: Nucl. Phys., A 688, 150c (2001)

    Article  ADS  Google Scholar 

  24. Block, M., et al.: Nucl. Instrum. Methods (2007) (in preparation)

    Google Scholar 

  25. Neurnayr, J.B., et al.: Rev. Sci. Instrum. 77, 065109 (2006)

    Article  ADS  Google Scholar 

  26. Weber, G, et al.: Eur. J. Phys., A 25(s01), 65 (2005)

    Article  Google Scholar 

  27. Ferrer, R.: Eur. J. Phys. (2007) (accepted for publ.)

    Google Scholar 

  28. Bollen, G., et al.: Nucl. Phys. A 693, 3 (2001)

    Article  ADS  Google Scholar 

  29. Bergstrøm, L, et al.: Nucl. Instrum. Methods, A 487, 618 (2002)

    Article  ADS  Google Scholar 

  30. Herfurth, F., et al.: In: Proceeding of the Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, AIP Conference Proceedings 793, 278 (2005)

    Article  ADS  Google Scholar 

  31. Billing, J., et al.: Int. J. Mass Spectr. 251, 198 (2006)

    Article  Google Scholar 

  32. Schwarz, S., et al.: Nucl. Instrum. Methods, B 204, 507 (2003)

    Article  ADS  Google Scholar 

  33. Ringle, R., et al.: Int. J. Mass Spectrom. 262, 33 (2007)

    Article  ADS  Google Scholar 

  34. Eliseev, S., et al.: Int. J. Mass Spectrom. 262, 45 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Block .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Block, M. et al. (2007). Mass measurements in the endpoint region of the rp-process at SHIPTRAP. In: Dilling, J., Comyn, M., Thompson, J., Gwinner, G. (eds) TCP 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73466-6_36

Download citation

Publish with us

Policies and ethics