Skip to main content

Q value related mass determinations using a Penning trap

  • Conference paper
TCP 2006

Abstract

We report here about measurements of reaction and decay Q values by precise determination of pairs of atomic masses. These were performed with the Penning trap mass spectrometer SMILETRAP. Measurements with Penning traps give reliable and accurate masses, in particular Q values, due to the fact that certain systematic errors to a great deal cancel in the mass difference between the two atoms defining the Q value. Some Q values that are of fundamental interest will be discussed here, for example, a new Q value for the 6Li (n, γ) 7Li reaction, for the β-decay of tritium, related to properties of the electron neutrino mass, and for the neutrino-less double β-decay of 76Ge, related to the question of whether the neutrino is a Majorana particle or not. In case of the latter two we report the most accurate Q values, namely 18,589.8 (12) eV for the tritium decay and 2,038.997 (46) keV for the neutrino-less double β-decay of 76Ge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audi, G.: Int. J. Mass Spectrom. 251, 85 (2006)

    Article  ADS  Google Scholar 

  2. Blaum, K.: Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  3. Bergström, I., et al.: Nucl. Instrum. Methods Phys. Res., Sect. A 487, 618 (2002)

    Article  ADS  Google Scholar 

  4. Van Dyck, R.S., et al.: Int. J. Mass Spectrom. 251, 231 (2006)

    Article  ADS  Google Scholar 

  5. Rainwille, S., Thompson, J.K., Pritchard, D.E.: Science 303, 3334 (2004)

    Google Scholar 

  6. Redshaw, M., McDaniel, J., Shi, W., Myers, E.G.: Int. J. Mass Spectrom. 251, 125 (2006)

    Article  ADS  Google Scholar 

  7. Gabrielse, G.: Int. J. Mass Spectrom. 251, 273 (2006)

    Article  ADS  Google Scholar 

  8. Werth, G., et al.: Int. J. Mass Spectrom. 251, 152 (2006)

    Article  ADS  Google Scholar 

  9. Blaum, K., et al.: J. Phys. B 36, 921 (2003)

    Article  ADS  Google Scholar 

  10. Block, M., et al.: Eur. J. Phys. A 25, 49 (2005)

    Article  Google Scholar 

  11. Jokinen, A., et al.: Nucl. Phys. A 746, 227 (2004)

    Article  ADS  Google Scholar 

  12. Savard, G., et al.: Int. J. Mass Spectrom. 251, 252 (2006)

    Article  ADS  Google Scholar 

  13. Ringle, R., et al.: Int. J. Mass Spectrom. 251, 300 (2006)

    Article  ADS  Google Scholar 

  14. Gräf f, G., Kalinowsky, H., Traut, J.: Zeitschrift für Physik A 297, 35 (1980)

    Article  ADS  Google Scholar 

  15. Ahmad, Q.R., et al.: Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  16. Fukuda, Y., et al.: Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  17. Kraus, Ch., et al.: Phys. J. C. 40, 447 (2005)

    ADS  Google Scholar 

  18. Otten, E.W., et al.: Int. J. Mass Spectrom. 251, 173 (2006)

    Article  ADS  Google Scholar 

  19. Angrik, J., et al.: FZKA Sci. Rep. 7090, 1 (2004)

    Google Scholar 

  20. Bornschein, L., et al.: Nucl. Phys. A 752, 14c (2005)

    Article  ADS  Google Scholar 

  21. Klapdor-Kleingrothaus, H.V., Krivosheina, I.V., Dietz, A., Chkvorets, O.: Phys. Lett. B 586, 198 (2004)

    Article  ADS  Google Scholar 

  22. Beebe, E., Liljeby, L, Engström, Å., Björ khage, M.: Physica Scripta 47, 470 (1993)

    Google Scholar 

  23. Bergström. L, Björ khage, M., Danared, H., Cederquist, H., Fritioff, T., Liljeby, L., Schuch, R.: AIP Conference Proceedings 572, Upton, New York, (2001)

    Google Scholar 

  24. Di Filippo, F., et al.: Phys. Rev. Lett., 73, 1481 (1994)

    Article  ADS  Google Scholar 

  25. Kelly, R.L.: J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987)

    Google Scholar 

  26. Rodrigues, G.C., ín delicaío, P., Santos, J.R, Patte, P., Parante, F.: Atomic Data and Nuclear Data Tables 86, 117 (2004)

    Article  ADS  Google Scholar 

  27. Fritioff, T., et al.: Int. i. Mass Spectrom. 251, 281 (2006)

    Article  Google Scholar 

  28. Kön ig, M., et al.: Int. J. Mass Spectrom. 142, 95 (1995)

    Article  ADS  Google Scholar 

  29. Bollen, G., et al.: Nucl. Instrum. Meth. B 70, 490 (1992)

    Article  ADS  Google Scholar 

  30. Kretzschmar, M.: Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  31. George, S., et al.: Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  32. Suhonen, M., et al.: JINST 2, P06003, (2007)

    Article  ADS  Google Scholar 

  33. Audi, G., Wapstra, A.H., Thibault, C.: Nucl. Phys. A 729, 1 (2003)

    ADS  Google Scholar 

  34. Heavner, T.P., Jefferts S.R., Dunn, G.H.: Phys. Rev. A 64, 062504 (2001)

    Article  ADS  Google Scholar 

  35. Kok, P.J.J., Abrahams, K., Postma, H., Huiskamp, W.J.: Nucl. Instrum. Meth. B 12, 325 (1985)

    Article  ADS  Google Scholar 

  36. Nagy, Sz., et al.: Phy. Rev. Lett. 96, 163004 (2006)

    Article  ADS  Google Scholar 

  37. Bushaw, B., et al.: Phys. Rev. Lett. 91, 043004 (2003)

    Article  ADS  Google Scholar 

  38. Ewald, G., et al.: Phys. Rev. Lett. 93, 113002 (2004)

    Article  ADS  Google Scholar 

  39. Sanchez, R., et al.: Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  40. Van Dyck, R.S., Farnham D.L., Schwinberg, P.B.: Phys. Rev. Lett., 70 2888 (1993)

    Article  ADS  Google Scholar 

  41. Fritioff, T., et al.: Eur. Phys. J. D. 15, 141 (2001)

    Article  ADS  Google Scholar 

  42. Nagy, Sz., et al.: Europhys. Lett., 74, 404 (2006)

    Article  ADS  Google Scholar 

  43. Douysset, G., Fritioff, T., Carlberg, C, Bergström, I., Björ khage, M.: Phys. Rev. Lett. 86, 4259 (2001)

    Article  ADS  Google Scholar 

  44. Hukawy, J. G., et al.: Phys. Rev. Lett. 67, 1708 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Schuch, R. et al. (2007). Q value related mass determinations using a Penning trap. In: Dilling, J., Comyn, M., Thompson, J., Gwinner, G. (eds) TCP 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73466-6_30

Download citation

Publish with us

Policies and ethics