Skip to main content

Magnetic Tunnel Junctions

  • Chapter
Book cover Magnetic Heterostructures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 227))

abstract

In magnetoelectronic devices large opportunities are opened by the spin dependent tunneling resistance, where a strong dependence of the tunneling current on the relative orientation of the magnetization of the electrodes is found. Within a short time, the amplitude of the resistance change of the junctions increased dramatically. We will cover Al-O and MgO based junctions and present highly spin-polarized electrode materials such as Heusler alloys. Furthermore, we will give a short overview on applications such as read heads in hard disk drives, storage cells in MRAMs, field programmable logic circuits and biochips. Finally, we will discuss the currently growing field of current induced magnetization switching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. 2.

    Google Scholar 

  2. J. C. Slonczewski. Phys. Rev. B, 39:6995, 1989.

    Article  ADS  Google Scholar 

  3. M. Julliere. Phys. Lett., 54A:225, 1975.

    ADS  Google Scholar 

  4. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey. Phys. Rev. Lett., 74(16):3273, 1995.

    Article  ADS  Google Scholar 

  5. T. Miyazaki and N. Tezuka. J. Magn. Magn. Mater., 139:231, 1995.

    ADS  Google Scholar 

  6. P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers. Phys. Rev. Lett., 57:2442, 1986.

    Article  ADS  Google Scholar 

  7. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Phys. Rev. Lett., 61:2472, 1988.

    Article  ADS  Google Scholar 

  8. J. Schmalhorst, H. Brückl, G. Reiss, M. Vieth, G. Gieres, and J. Wecker. J. Appl. Phys., 87(9):5191, 2000.

    Article  ADS  Google Scholar 

  9. S. Gider, B. Runge, A. C. Marley, and S. S. P. Parkin. Science, 281:797, 1998.

    Article  ADS  Google Scholar 

  10. M. A. Ruderman and C. Kittel, Phys. Rev., 96:99, 1954.

    Article  ADS  Google Scholar 

  11. T. Kasuya, Prog. Theor. Phys., 16:45, 1956.

    Article  MATH  ADS  Google Scholar 

  12. K. Yosida, Phys. Rev., 106:893, 1957.

    Article  ADS  Google Scholar 

  13. J. Schmalhorst, H. Brückl, G. Reiss, R. Kinder, G. Gieres, and J. Wecker. Appl. Phys. Lett., 77:3456, 2000.

    Article  ADS  Google Scholar 

  14. W. H. Meiklejohn and C. P. Bean. Phys. Rev., 102:1413, 1956.

    Article  ADS  Google Scholar 

  15. A. Käufler, Y. Luo, K. Samwer, G. Gieres, M. Vieth, and J. Wecker. J. Appl. Phys., 91:1701, 2002.

    Article  ADS  Google Scholar 

  16. E. W. Pugh, R. A. Henle, D. L. Critchlow, and L. A. Russell. IBM J. Res. & Dev., 25:585, 1981.

    Google Scholar 

  17. B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit. J. Appl Phys., 69:4774, 1991.

    Article  ADS  Google Scholar 

  18. A. Anguelouch, B. D. Schrag, G. Xiao, Y. Lu, P. L. Trouilloud, R. A. Wanner, W. J. Gallagher, and S. S. P. Parkin. Appl. Phys. Lett., 76:622, 2000.

    Article  ADS  Google Scholar 

  19. H. Kubota, G. Reiss, H. Brückl, W. Schepper, J. Wecker, , and G. Gieres. Jpn. J. Appl. Phys., Part 2, 41:L180, 2002.

    Article  Google Scholar 

  20. private communication, Singulus Technologies, Germany.

    Google Scholar 

  21. W. C. Black Jr. and B. Das. J. Appl. Phys., 87:6674, 2000.

    Article  ADS  Google Scholar 

  22. R. Richter, L. Bär, J. Wecker, and G. Reiss. Appl. Phys. Lett., 80:1291, 2002.

    Article  ADS  Google Scholar 

  23. A. Ney, C. Pampuch, R. Koch, and K. Ploog. Nature, 418:509, 2002.

    Article  Google Scholar 

  24. R. Hartenstein and H. Grünbacher (Ed.): The Roadmap to Reconfigurable computing – Proc. FPL2000, Aug. 27–30, 2000; LNCS, Springer-Verlag 2000.

    Google Scholar 

  25. G. Reiss and D. Meyners. Appl. Phys. Lett., 88:043505, 2006.

    Article  ADS  Google Scholar 

  26. W. J. Gallagher and S. S. P. Parkin. IBM J. Res. & Dev., 50:5, 2006.

    Article  Google Scholar 

  27. J. Schotter, P. B. Kamp, A. Becker, A. Pühler, D. Brinkmann, W. Schepper, H. Brückl, and G. Reiss. IEEE Trans. Magn., 38:3365, 2002.

    Article  ADS  Google Scholar 

  28. G. Reiss and A. Hütten. Nature Materials – News and Views, 4:725, 2005.

    Article  ADS  Google Scholar 

  29. D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton. Biosens. Bioelectron., 13:731, 1998.

    Article  Google Scholar 

  30. J. C. Slonczewski. J. Magn. Magn. Mater., 159:L1, 1996.

    Article  ADS  Google Scholar 

  31. Z. T. Diao, M. Pakala, A. Panchula, Y. F. Ding, D. Apalkov, L. C. Wang, E. Chen, and Y. M. Huai. J. Appl. Phys., 99:08G510, 2006.

    Article  Google Scholar 

  32. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. Yang. Nat. Mater., 3:862, 2004.

    Article  ADS  Google Scholar 

  33. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Nat. Mater., 3:868, 2004.

    Article  ADS  Google Scholar 

  34. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Science, 294:1488, 2001.

    Article  ADS  Google Scholar 

  35. J. M. D. Coey and C. L. Chien. MRS Bulletin, 28:720, 2003.

    Google Scholar 

  36. C. Palmstrom. MRS Bulletin, 28:725, 2003.

    Google Scholar 

  37. R. de Groot, F. Mueller, P. van Engen, and K. Buschow. Phys. Rev. Lett., 50:2024, 1983.

    Article  ADS  Google Scholar 

  38. J. Tobola, J. Pierre, S. Kaprzyk, R. V. Skolozdra, and M. A. Kounacou. J. Phys.: Condens. Matter, 10:1013, 1998.

    Article  ADS  Google Scholar 

  39. J. Tobola and J. Pierre. J. Alloys and Compounds, 296:243, 2000.

    Article  Google Scholar 

  40. I. Galanakis, P. H. Dederichs, and N. Papanikolaou. Phys. Rev. B, 66: 134428, 2002.

    Google Scholar 

  41. S. Ishida, T. Masaki, S. Fujii, and S. Asano. Physica B, 245:1, 1998.

    Article  ADS  Google Scholar 

  42. A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen. J. Phys.: Condens. Matter, 11:2017, 1999.

    Article  ADS  Google Scholar 

  43. A. Deb and Y. Sakurai. J. Phys.: Condens. Matter, 12:2997, 2000.

    Article  ADS  Google Scholar 

  44. I. Galanakis, P. H. Dederichs, and N. Papanikolaou. Phys. Rev. B, 66: 174429, 2002.

    Article  ADS  Google Scholar 

  45. C. T. Tanaka, J. Nowak, and J. S. Moodera. J. Appl. Phys., 86:6239, 1999.

    Article  ADS  Google Scholar 

  46. K. Inomata, S. Okamura, R. Goto, and N. Tezuka. Jpn. J. Appl. Phys., 42: L419, 2003.

    Google Scholar 

  47. P. Brown, K. Neumann, P. Webster, and K. Ziebeck. J. Phys.: Condens. Matter, 12:1827, 2000.

    Article  ADS  Google Scholar 

  48. L. J. Singh, Z. H. Barber, Y. Miyoshi, Y. Bugoslavsky, W. R. Branford and L. F. Cohen, Los Alamos National Laboratory Preprint archive, Condensed Matter, arXiv: cond-mat/031116 (2003).

    Google Scholar 

  49. A. Thomas, PhD thesis, Department of Physics, University of Bielefeld, 2004.

    Google Scholar 

  50. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss. Appl. Phys. Lett., 85: 79, 2004.

    Article  ADS  Google Scholar 

  51. A. Hütten, S. Kämmerer, J. Schmalhorst, A. Thomas, and G. Reiss. phys. stat. sol. (a), 201:3271, 2004.

    Article  ADS  Google Scholar 

  52. K. Inomata, S. Okamura, A. Miyazaki, M. Kikuchi, N. Tezuka, M. Wojcik, and E. Jedryka. J. Phys. D: Appl. Phys., 39:816, 2006.

    Article  ADS  Google Scholar 

  53. M. Kallmayer, H. J. Elmers, B. Balke, S. Wurmehl, F. Emmerling, G. H. Fecher, and C. Felser. J. Phys. D: Appl. Phys., 39:786, 2006.

    Article  ADS  Google Scholar 

  54. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota. Appl. Phys. Lett., 88:192508, 2006.

    Article  ADS  Google Scholar 

  55. Reference database, International Centre for Diffraction Data (1999).

    Google Scholar 

  56. P. Webster. Contemp. Phys., 10:559, 1969.

    Article  ADS  Google Scholar 

  57. A. Hütten, S. Kämmerer, J. Schmalhorst and G. Reiss, Chap. 9 in “Half-metallic Alloys: Fundamentals and Applications”, Springer series “Lecture Notes on Physics”, Vol. 676, ISBN: 3-540-27719-6, Editors: I. Galanakis und H. Dederichs, P. Heinz, Springer Verlag (2005).

    Google Scholar 

  58. A. Thomas, J. S. Moodera, and B. Satpati. J. Appl. Phys., 97:10C908, 2005.

    Article  Google Scholar 

  59. S. Wurmehl, G. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, H. Lin, and J. Morais. Phys. Rev. B, 72:184434, 2005.

    Article  ADS  Google Scholar 

  60. K. Inomata, N. Tezuka, S. Okamura, H. Kobayashi, and A. Hirohata. J. Appl. Phys., 95:7234, 2004.

    Article  ADS  Google Scholar 

  61. J. Schmalhorst, S. Kämmerer, G. Reiss, and A. Hütten. Appl. Phys. Lett., 86:152102, 2005.

    Article  ADS  Google Scholar 

  62. M. Oogane, Y. Sakuraba, J. Nakata, H. Kubota, Y. Ando, A. Sakuma, and T. Miyazaki. J. Phys. D: Appl. Phys., 39:834, 2006.

    Article  ADS  Google Scholar 

  63. T. Marukame, T. Ishikawa, K.-I. Matsuda, T. Uemura, and M. Yamamoto. J. Appl. Phys., 99:08A904, 2006.

    Article  Google Scholar 

  64. D. Ebke, J. Schmalhorst, N.-N. Liu, A. Thomas, G. Reiss and A. Hütten. Appl. Phys. Lett., 89:162506, 2006.

    Article  ADS  Google Scholar 

  65. The Munich SPR-KKR package, version 2.1.3 and 3.6, H. Ebert et. al, http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR; H. Ebert, Fully relativistic band structure calculations for magnetic solids – Formalism and Application, in Electronic Structure and Physical Properties of Solids, editor: H. Dreyssè, Lecture Notes in Physics, vol. 535, p. 191, Springer Berlin.

    Google Scholar 

  66. Y. U. Idzerda, C. T. Chen, H.-J. Lin, G. Meigs, G. H. Ho, and C.-C. Kao. Nucl. Instrum. Methods Phys. Res. A, 347:134, 1994.

    Article  ADS  Google Scholar 

  67. J. Schmalhorst et al., Joint Intermag/MMM 2007 Conference, Balitmore, ER-12, IEEE Trans. Mag., accepted.

    Google Scholar 

  68. J. Schmalhorst, A. Thomas, S. Kämmerer, O. Schebaum, D. Ebke, M. D. Sacher, G. Reiss, A. Hütten, A. Turchanin, A. Göolzhäuser, and E. Arenholz. Phys. Rev. B, 75:014403, 2007.

    Article  ADS  Google Scholar 

  69. J. Schmalhorst and G. Reiss. Phys. Rev. B, 68:224437, 2003.

    Article  ADS  Google Scholar 

  70. Y. Yonamoto, T. Yokoyama, K. Amemiya, D. Matsumura, and T. Ohta. Phys. Rev. B, 63:214406, 2001.

    Article  ADS  Google Scholar 

  71. C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette. Phys. Rev. Lett., 75:152–155, 1995.

    Google Scholar 

  72. J. Schmalhorst, S. Kämmerer, M. Sacher, G. Reiss, A. Hütten, and A. Scholl. Phys. Rev. B, 70:024426, 2004.

    Article  ADS  Google Scholar 

  73. H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey, and J. Stöhr. Phys. Rev. Lett., 91:017203, 2003.

    Article  ADS  Google Scholar 

  74. L. Ritchie, G. Xiao, Y. Ji, T. Y. Chen, C. L. Chien, M. Zhang, J. Chen, Z. Liu, G. Wu, and X. X. Zhang. Phys. Rev. B, 68:104430, 2003.

    Article  ADS  Google Scholar 

  75. E. L. Wolf. Principles of electron tunneling spectroscopy, Oxford University Press (1989).

    Google Scholar 

  76. A. M. Bratkovsky. Phys. Rev. B, 56:2344, 1997.

    Article  ADS  Google Scholar 

  77. F. Montaigne, M. Hehn, and A. Schuhl. Phys. Rev. B, 64:144402, 2001.

    Article  ADS  Google Scholar 

  78. C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera. Phys. Rev. B, 58(6):R2917–R2920, 1998.

    Article  ADS  Google Scholar 

  79. S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin. 79(19): 3744–3747, 1997.

    Google Scholar 

  80. A. M. Bratkovsky. Appl. Phys. Lett., 72(18):2334–2336, 1998.

    Article  ADS  Google Scholar 

  81. X.-F. Han, A. C. C. Yu, M. Oogane, J. Murai, T. Daibou, and T. Miyazaki. Phys. Rev. B, 63:224404, 2001.

    Article  ADS  Google Scholar 

  82. Y. Xu, D. Ephron, and M. R. Beasley. Phys. Rev. B, 52:2843–2859, 1995.

    Google Scholar 

  83. R. Jansen and J. S. Moodera. Phys. Rev. B, 61:9047, 2000.

    Article  ADS  Google Scholar 

  84. F. Guinea. Phys. Rev. B, 58:9212, 1998.

    Article  ADS  Google Scholar 

  85. A. Thomas, D. Meyners, D. Ebke, N. Liu, M. D. Sacher, J. Schmalhorst, G. Reiss, H. Ebert, and A. Hütten. Appl. Phys. Lett., 89:012502, 2006.

    Article  ADS  Google Scholar 

  86. J. A. Hertz and K. Aoi. Phys. Rev. B, 8:3252, 1973.

    Article  ADS  Google Scholar 

  87. J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne, and P. Seneor. Science, 286:507, 1999.

    Article  Google Scholar 

  88. J. S. Moodera and G. Mathon. J. Magn. Magn. Mater., 200:248, 1999.

    Article  ADS  Google Scholar 

  89. D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink. presented at the IEEE Intermag 2004 Conference, January 6, 2004.

    Google Scholar 

  90. R. Meservey and P. M. Tedrow. Phys. Rep., 238:173, 1994.

    Article  ADS  Google Scholar 

  91. S. S. P. Parkin et al. Proc. IEEE, 91:661, 2003.

    Article  Google Scholar 

  92. M. Bowen et al. Appl. Phys. Lett., 82:233, 2003.

    Article  ADS  Google Scholar 

  93. A high MR ratio of about 170% has been recently observed at room temperature in fully epitaxial MTJs with a MgO(001) tunnel barrier and Heusler-alloy electrodes (e.g. N. Tezuka et al., Appl. Phys. Lett. 89, 252508 (2006)). This large TMR effect is, however, considered to originate from the coherent tunneling in a crystalline MgO(001) barrier rather than from the half metallic nature of the electrodes. Note that when combined with a crystalline MgO(001) barrier, even simple ferromagnetic electrodes such as Fe and Co yield giant MR ratios from 180% up to 410% at room temperature [33, 109] as described in Section 6.5.2.

    Google Scholar 

  94. S. Yuasa, T. Nagahama, and Y. Suzuki. Science, 297:234, 2002.

    Article  ADS  Google Scholar 

  95. T. Nagahama, S. Yuasa, E. Tamura, and Y. Suzuki. Phys. Rev. Lett., 95: 086602, 2005.

    Google Scholar 

  96. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren. Phys. Rev. B.

    Google Scholar 

  97. J. Mathon and A. Umersky. Phys. Rev. B, 63:220403R, 2001.

    Article  ADS  Google Scholar 

  98. D. Bagayako, A. Ziegler, and J. Callaway. Phys. Rev. B, 27:7046, 1983.

    Article  ADS  Google Scholar 

  99. X.-G. Zhang and W. H. Butler. Phys. Rev. B, 70:172407, 2004.

    Article  ADS  Google Scholar 

  100. P. Mavropoulos, N. Papanikolaou, and P. H. Dederichs. Phys. Rev. Lett., 85:1088, 2000.

    Article  ADS  Google Scholar 

  101. J. P. Velev et al. Phys. Rev. Lett., 95:216601, 2005.

    Article  ADS  Google Scholar 

  102. W. Wulfhekel et al. Appl. Phys. Lett., 78:509, 2001.

    Article  ADS  Google Scholar 

  103. M. Bowen et al. Appl. Phys. Lett., 79:1655, 2001.

    Article  ADS  Google Scholar 

  104. J. Faure-Vincent et al. Appl. Phys. Lett., 82:4507, 2003.

    Article  ADS  Google Scholar 

  105. H. L. Meyerheim et al. Phys. Rev. Lett., 87:07102, 2001.

    Article  Google Scholar 

  106. X.-G. Zhang, W. H. Butler, and A. Bandyopadhyay. Phys. Rev. B, 68: 092402, 2003.

    Article  ADS  Google Scholar 

  107. S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki. Jpn. J. Appl. Phys., 43:L588, 2004.

    Article  ADS  Google Scholar 

  108. K. Miyokawa et al. Jpn. J. Appl. Phys., 44:L9, 2005.

    Article  ADS  Google Scholar 

  109. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando. Appl. Phys. Lett., 89:042505, 2006.

    Article  ADS  Google Scholar 

  110. S. S. P. Parkin, N. More, and K. Roche. Phys. Rev. Lett., 64:2304, 1990.

    Article  ADS  Google Scholar 

  111. P. Bruno. Phys. Rev. B, 52:411, 1995.

    Article  ADS  Google Scholar 

  112. J. Faure-Vincent et al. Phys. Rev. Lett., 89:107206, 2002.

    Article  ADS  Google Scholar 

  113. T. Katayama et al. Appl. Phys. Lett., 89:112503, 2006.

    Article  ADS  Google Scholar 

  114. D. D. Djayaprawira et al. Appl. Phys. Lett., 86:092502, 2005.

    Article  ADS  Google Scholar 

  115. S. Ikeda et al. Jpn. J. Appl. Phys., 44:L1442, 2005.

    Article  ADS  Google Scholar 

  116. S. Yuasa, Y. Suzuki, T. Katayama, and K. Ando. Appl. Phys. Lett., 87:242503, 2005.

    Article  ADS  Google Scholar 

  117. Y. Nagamine et al. Appl. Phys. Lett., 89:162507, 2006.

    Article  ADS  Google Scholar 

  118. J. M. Slaughter et al. Technical Digest of IEEE International Electron Devices.

    Google Scholar 

  119. Y. Huai et al. Appl. Phys. Lett., 84:3118, 2004.

    Article  ADS  Google Scholar 

  120. H. Kubota et al. Jpn. J. Appl. Phys., 44:L1237, 2005.

    Article  ADS  Google Scholar 

  121. Z. Diao et al. Appl. Phys. Lett., 87:232502, 2005.

    Article  ADS  Google Scholar 

  122. M. Hosomi et al.: Technical Digest of IEEE International Electron Devices Meeting, 19.1 (2005).

    Google Scholar 

  123. A. A. Tulapurkar et al. Nature, 438:339, 2005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reiss, G., Schmalhorst, J., Thomas, A., Hütten, A., Yuasa, S. (2008). Magnetic Tunnel Junctions. In: Zabel, H., Bader, S.D. (eds) Magnetic Heterostructures. Springer Tracts in Modern Physics, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73462-8_6

Download citation

Publish with us

Policies and ethics