Skip to main content

MIRAI: Multi-hierarchical, FS-Tree Based Music Information Retrieval System

  • Conference paper
Rough Sets and Intelligent Systems Paradigms (RSEISP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4585))

Abstract

With the fast booming of online music repositories, there is a need for content-based automatic indexing which will help users to find their favorite music objects in real time. Recently, numerous successful approaches on musical data feature extraction and selection have been proposed for instrument recognition in monophonic sounds. Unfortunately, none of these methods can be successfully applied to polyphonic sounds. Identification of music instruments in polyphonic sounds is still difficult and challenging, especially when harmonic partials are overlapping with each other. This has stimulated the research on music sound separation and new features development for content-based automatic music information retrieval. Our goal is to build a cooperative query answering system (QAS), for a musical database, retrieving from it all objects satisfying queries like ”find all musical pieces in pentatonic scale with a viola and piano where viola is playing for minimum 20 seconds and piano for minimum 10 seconds”. We use the database of musical sounds, containing almost 4000 sounds taken from the MUMs (McGill University Master Samples), as a vehicle to construct several classifiers for automatic instrument recognition. Classifiers showing the best performance are adopted for automatic indexing of musical pieces by instruments. Our musical database has an FS-tree (Frame Segment Tree) structure representation. The cooperativeness of QAS is driven by several hierarchical structures used for classifying musical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Tal, O., Berger, J., Cook, B., Daniels, M., Scavone, G., Cook, P.: SONART: The Sonification Application Research Toolbox. In: Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan (July 2002)

    Google Scholar 

  2. Bregman, A.S.: Auditory scene analysis, the perceptual organization of sound. MIT Press, Cambridge (1990)

    Google Scholar 

  3. Brown, J.C., Houix, O., McAdams, S.: Feature dependence in the automatic identification of musical woodwind instruments. J. Acoust. Soc. of America 109, 1064–1072 (2001)

    Article  Google Scholar 

  4. Cardoso, J.F., Comon, P.: Independent Component Analysis, a Survey of Some Algebraic methods. In: Proc. ISCAS Conference, Atlanta, May 1996, vol. 2, pp. 93–96 (1996)

    Google Scholar 

  5. Flanagan, J.L.: Speech Analysis, Synthesis and Perception. Springer, New York (1972)

    Google Scholar 

  6. Fujinaga, I., McMillan, K.: Real time Recognition of Orchestral Instruments. In: International Computer Music Conference, pp. 141–143 (2000)

    Google Scholar 

  7. Gaasterland, T.: Cooperative answering through controlled query relaxation. IEEE Expert 12(5), 48–59 (1997)

    Article  Google Scholar 

  8. Godfrey, P.: Minimization in cooperative response to failing database queries. International Journal of Cooperative Information Systems 6(2), 95–149 (1993)

    Article  Google Scholar 

  9. Goodwin, M.M.: Adaptive Signal Models: Theory, Algorithms, and Audio Applications, Ph.D. dissertation, University of California, Berkeley (1997)

    Google Scholar 

  10. Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: ISMIR 2000. Proc. of International Symposium on Music Information Retrieval, Plymouth, MA (2000)

    Google Scholar 

  11. Hornbostel, E.M.V., Sachs, C.: Systematik der Musikinstrumente. Ein Versuch. Zeitschrift fur Ethnologie 46(4-5), 553–590 (1914), available at http://www.uni-bamberg.de/ppp/ethnomusikologie/HS-Systematik/HS-Systematik

    Google Scholar 

  12. Kaminskyj, I.: Multi-feature Musical Instrument Classifier, MikroPolyphonie 6, 2000, online journal at http://farben.latrobe.edu.au/

  13. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for Their Automatic Classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)

    Google Scholar 

  14. Kostek, B., Wieczorkowska, A.: Parametric Representation of Musical Sounds. Archive of Acoustics 22(1), 3–26 (1997)

    Google Scholar 

  15. Lewis, R., Zhang, X., Ras, Z.W.: Blind Signal Separation of Similar Pitches and Instruments in a Noisy Polyphonic Domain. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 228–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG-7. Multimedia Content Description Interface. J. Wiley and Sons, New York (2002)

    Google Scholar 

  17. Martin, K.D., Kim, Y.E.: Musical instrument identification: a pattern-recognition approach. In: Proceedings of 136th Meeting of the Acoustical Society of America, Norfolk, VA (October 1998)

    Google Scholar 

  18. Meier, U., Stiefelhagen, R., Yang, J., Waibel, A.: Towards Unrestricted Lip Reading. International Journal of Pattern Recognition and Artificial Intelligence 14(5), 571–586 (2000)

    Article  Google Scholar 

  19. Opolko, F., Wapnick, J.: MUMS - McGill University Master Samples, CD’s (1987)

    Google Scholar 

  20. Pollard, H.F., Jansson, E.V.: A Tristimulus Method for the spectificaiton of Musical Timbre. Acustica (51), 162–171 (1982)

    Google Scholar 

  21. Popovic, I., Coifman, R., Berger, J.: Aspects of Pitch-Tracking and Timbre Separation: Feature Detection in Digital Audio Using Adapted Local Trigonometric Bases and Wavelet Packets Center for Studies in Music Technology, Yale University, Research Abstract (June 1995)

    Google Scholar 

  22. Rabiner, L., Schafer, R.: Digital Processing of Speech Signals. Prentice-Hall, Englewood Cliffs, New Jersey (1978)

    Google Scholar 

  23. Wieczorkowska, A.: Musical Sound Classification based on Wavelet Analysis. Fundamenta Informaticae Journal 47(1), 175–188 (2001)

    MATH  Google Scholar 

  24. Wieczorkowska, A.: The recognition efficiency of musical instrument sounds depending on parameterization and type of a classifier, PhD. thesis (in Polish), Technical University of Gdansk, Poland (1999)

    Google Scholar 

  25. Wieczorkowska, A., Raś, Z.W., Zhang, X., Lewis, R.: Multi-way Hierarchic Classification of Musical Instrument Sounds (will appear). In: MUE 2007. Proceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engineering, Seoul, Korea, April 26-28, 2007, IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  26. Zhang, X., Raś, Z.W.: Differentiated Harmonic Feature Analysis on Music Information Retrieval For Instrument Recognition. In: IEEE GrC, 2006. Proceedings of IEEE International Conference on Granular Computing, Atlanta, Georgia, May 10-12, 2006, pp. 578–581. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  27. Zhang, X., Marasek, K., Raś, Z.W.: Maximum Likelihood Study for Sound Pattern Separation and Recognition. In: MUE 2007. Proceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engineering, Seoul, Korea, April 26-28, 2007, IEEE Computer Society Press, Los Alamitos (2007) (will appear)

    Google Scholar 

  28. Zhang, X., Raś, Z.W.: Analysis of Sound Features for Music Timbre Recognition. In: MUE 2007. Proceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engineering, April 26-28, 2007, IEEE Computer Society Press, Los Alamitos, in Seoul, Korea (will appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marzena Kryszkiewicz James F. Peters Henryk Rybinski Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raś, Z.W., Zhang, X., Lewis, R. (2007). MIRAI: Multi-hierarchical, FS-Tree Based Music Information Retrieval System. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73451-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73450-5

  • Online ISBN: 978-3-540-73451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics