Skip to main content

Discrete Models of Biochemical Networks: The Toric Variety of Nested Canalyzing Functions

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

Abstract

This paper focuses on the class of nested canalyzing Boolean functions. This class has been introduced and studied recently as a possible source for models of biological networks with favorable dynamic properties. We provide a geometric model for this class in the form of a toric algebraic variety described by a set of binomial polynomial equations, each of whose rational points corresponds to a nested canalyzing function. Toric varieties have a rich geometric and combinatorial structure which provides a basis for a theoretical study of the properties of canalyzing functions. In particular, a good computational characterization of this class would facilitate their incorporation into network inference methods for discrete biochemical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W.W., Loustaunau, P.: An introduction to Gröbner bases. Graduate Studies in Mathematics. American Mathematical Society, vol. 3. Providence, RI (1994)

    Google Scholar 

  2. Colón-Reyes, O., Laubenbacher, R., Pareigis, B.: Boolean monomial dynamical systems. Ann. Comb. 8, 425–439 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dimitrova, E., Jarrah, A.S., Laubenbacher, R., Stigler, B.: A.Gröbner fan-based method for biochemical network modeling (submitted, 2007)

    Google Scholar 

  4. Dimitrova, E., McGee, J., Vera-Licona, P., Laubenbacher, R.: A comparison of discretization methods for biochemical network inference (submitted, 2007)

    Google Scholar 

  5. Gat-Viks, I., Shamir, R., Karp, R.M., Sharan, R.: Reconstructing chain functions in genetic networks. Pacific Symp. Biocomputing 9, 498–509 (2004)

    Google Scholar 

  6. Jarrah, A., Laubenbacher, R., Stigler, B., Stillman, M.: Reverse-engineering of polynomial dynamical systems. Adv. Appl. Math. (in press, 2006)

    Google Scholar 

  7. Jarrah, A., Raposa, B., Laubenbacher, R.: Nested canalyzing, unate cascade, and polynomial functions. Physica D, page under revision (2006)

    Google Scholar 

  8. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. PNAS 100(25), 14796–14799 (2003)

    Article  Google Scholar 

  9. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Genetic networks with canalyzing Boolean rules are always stable. PNAS 101(49), 17102–17107 (2004)

    Article  Google Scholar 

  10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  Google Scholar 

  11. Kauffman, S.A.: The Origins of Order: Self–Organization and Selection in Evolution. Oxford University Press, New York, Oxford (1993)

    Google Scholar 

  12. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229, 523–537 (2004)

    Article  MathSciNet  Google Scholar 

  13. Moreira, A.A., Amaral, L.A.N.: Canalizing Kauffman networks: Nonergodicity and its effect on their critical behavior. Physical Review Letters 94(21), 218–702 (2005)

    Article  Google Scholar 

  14. Raeymaekers, L.: Dynamics of boolean networks controlled by biologically meaningful functions. J. Theor. Biol. 218, 331–341 (2002)

    Article  MathSciNet  Google Scholar 

  15. Rämö, P., Kesseli, J., Yli-Harja, O.: Stability of functions in boolean models of gene regulatory networks. Chaos 15 (2005)

    Google Scholar 

  16. Shmulevich, I., Lädesmäki, H., Dougherty, E.R., Astola, J., Zhang, W.: The role of certain post classes of in boolean network models of genetic networks. PNAS 100(19), 10724–10739 (2003)

    Article  Google Scholar 

  17. Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993)

    MATH  Google Scholar 

  18. Sturmfels, B.: Gröbner bases and convex polytopes, vol 8 of University Lecture Series. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  19. Waddington, C.H.: Canalisation of development and the inheritance of acquired characters. Nature 150, 563–564 (1942)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jarrah, A.S., Laubenbacher, R. (2007). Discrete Models of Biochemical Networks: The Toric Variety of Nested Canalyzing Functions. In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics