Skip to main content

Algorithmic Algebraic Model Checking IV: Characterization of Metabolic Networks

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

Abstract

A series of papers, all under the title of Algorithmic Algebraic Model Checking (AAMC), has sought to combine techniques from algorithmic algebra, model checking and dynamical systems to examine how a biochemical hybrid dynamical system can be made amenable to temporal analysis, even when the initial conditions and unknown parameters may only be treated as symbolic variables. This paper examines how to specialize this framework to metabolic control analysis (MCA) involving many reactions operating at many dissimilar time-scales. In the earlier AAMC papers, it has been shown that the dynamics of various biochemical semi-algebraic hybrid automata could be unraveled using powerful techniques from computational real algebraic geometry. More specifically, the resulting algebraic model checking techniques were found to be suitable for biochemical networks modeled using general mass action (GMA) based ODEs. This paper scrutinizes how the special properties of metabolic networks–a subclass of the biochemical networks previously handled–can be exploited to gain improvement in computational efficiency. The paper introduces a general framework for performing symbolic temporal reasoning over metabolic network hybrid automata that handles both GMA-based equilibrium estimation and flux balance analysis (FBA). While algebraic polynomial equations over ℚ[x 1, ..., x n ] can be symbolically solved using Gröbner bases or Wu-Ritt characteristic sets, the FBA-based estimation can be performed symbolically by rephrasing the algebraic optimization problem as a quantifier elimination problem. Effectively, an approximate hybrid automaton that simulates the metabolic network is derived, and is thus amenable to manipulation by the algebraic model checking techniques previously described in the AAMC papers.

The work reported in this paper was supported by two grants from NSF ITR program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anai, H.: On solving semidefinite programming by quantifier elimination. In: Proceedings of the American Control Conference (June 1998)

    Google Scholar 

  2. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Reasoning about Biochemical Processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

    Article  Google Scholar 

  3. Barnett, M.P.: Computer algebra in the life sciences. SIGSAM Bull. 36(4), 5–32 (2002)

    Article  MATH  Google Scholar 

  4. Barnett, M.P., Capitani, J.F., Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: Selected examples. International Journal of Quantum Chemistry 100, 80–104 (2004)

    Article  Google Scholar 

  5. Buchberger, B.: Grobner bases: An algorithmic method in polynomial ideal theory. Recent Trends in Multidimensional Systems Theory, 184–232 (1985)

    Google Scholar 

  6. Casagrande, A., Mysore, V., Piazza, C., Mishra, B.: Independent dynamics hybrid automata in systems biology. In: First International Conference on Algebraic Biology (2005)

    Google Scholar 

  7. Cascante, M., Boros, L.G., Comin-Anduix, B., de Atauri, P., Centelles, J.J., Lee, P.W.-N.: Metabolic control analysis in drug discovery and design. Nature Biotechnology 20, 243–249 (2002)

    Article  Google Scholar 

  8. Celik, E., Bayram, M.: Application of grobner basis techniques to enzyme kinetics. Applied Mathematics and Computation 153, 97–109 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. (2005), available at http://cocoa.dima.unige.it

  10. European Commission. Posso: Polynomial system solving research project. (1996), http://posso.dm.unipi.it

  11. Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics, 3rd edn. Portland Press, London (2004)

    Google Scholar 

  12. Cornish-Bowden, A., Cardenas, M.L.: Metabolic analysis in drug design. C.R. Biologies 326, 509–515 (2003)

    Article  Google Scholar 

  13. Cornish-Bowden, A., Cardenas, M.L.: Systems biology may work when we learn to understand the parts in terms of the whole. Biochemical Society Transactions 33(3) (2005)

    Google Scholar 

  14. Cornish-Bowden, A., Hofmeyr, J.-H.S.: Enzymes in context: Kinetic characterization of enzymes for systems biology. The Biochemist 27, 11–14 (2005)

    Google Scholar 

  15. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  16. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  MathSciNet  Google Scholar 

  17. Fell, D.A.: Understanding the Control of Metabolism. Portland Press, London (1997)

    Google Scholar 

  18. Gallo, G., Mishra, B.: Wu-ritt characteristic sets and their complexity. DIMACS series in Discrete Mathematics and Theoretical Computer Science 6, 111–136 (1991)

    MathSciNet  Google Scholar 

  19. Gerdtzen, Z.P., Daoutidis, P., Hu, W.S.: Non-linear reduction for kinetic models of metabolic reaction networks. Metab. Eng. 6(2), 140–154 (2004)

    Article  Google Scholar 

  20. Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/

  21. Hofmeyr, J.-H.S.: Metabolic control analysis in a nutshell. In: Proceedings of the Second International Conference on Systems Biology, pp. 291–300 (2001)

    Google Scholar 

  22. Hong, H.: Quantifier elimination in elementary algebra and geometry by partial cylindrical algebraic decomposition, version 13. (1995), WWW site www.eecis.udel.edu/~saclib

  23. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J., Kitano, H.: The erato systems biology workbench: Enabling interaction and exchange between software tools for computational biology. In: Proceedings of the Pacific Symposium on Biocomputing (2002)

    Google Scholar 

  24. Ingalls, B.P.: A control theoretic interpretation of metabolic control analysis (submitted) (2005), http://www.math.uwaterloo.ca/~bingalls/Pubs/con.pdf

  25. Jibetean, D.: Algebraic optimization with applications to system theory. PhD Thesis, Department of Mathematics, Vrije University, Amsterdam (2003)

    Google Scholar 

  26. Jirstrand, M.: Nonlinear control system design by quantifier elimination. J. Symbolic Computation 24, 137–152 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    Article  Google Scholar 

  28. Keener, J.P., Sneyd, J.: Mathematical Physiology. Springer, New York (1998)

    MATH  Google Scholar 

  29. Kumar, S.P., Feidler, J.C.: Biospice: A computational infrastructure for integrative biology. OMICS: A Journal of Integrative Biology 7(3), 225–225 (2003)

    Article  Google Scholar 

  30. Lanotte, R., Tini, S.: Taylor Approximation for Hybrid Systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 402–416. Springer, Heidelberg (2005)

    Google Scholar 

  31. Lee, D.Y., Yun, H., Park, S., Lee, S.Y.: Metafluxnet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19(16), 2144–2146 (2003)

    Article  Google Scholar 

  32. Litcanu, G., Velazquez, J.J.L.: Singular perturbation analysis of camp signalling in dictyostelium discoideum aggregates. J. of Mathematical Biology 52(5), 682–718 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mahadevan, R., Edwards, J.S., Doyle-III, F.J.: Dynamic flux balance analysis of diauxic growth in escherichia coli. Biophysical Journal 83, 1331–1340 (2002)

    Article  Google Scholar 

  34. Manocha, D., Canny, J.F.: Multipolynomial resultant algorithms. J. Symbolic Computation 15, 99–122 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mendes, P.: Biochemistry by numbers: simulation of biochemical pathways with gepasi 3. Trends in Biochemical Sciences 22, 361–363 (1997)

    Article  Google Scholar 

  36. Minimair, M., Barnett, M.P.: Solving polynomial equations for chemical problems using Gröbner bases. Molecular Physics 102(23–24), 2521–2535 (2004)

    Article  Google Scholar 

  37. Mishra, B.: Algorithmic Algebra. In: Texts and Monographs in Computer Science, Springer, New York (1993)

    Google Scholar 

  38. Mishra, B.: Computational Real Algebraic Geometry, pp. 740–764. CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  39. Mysore, V.: Algorithmic Algebraic Model Checking: Hybrid Automata and Systems Biology. Ph.D. Thesis, New York University, New York, USA (2006)

    Google Scholar 

  40. Mysore, V., Casagrande, A., Piazza, C., Mishra, B.: Tolque – A Tool for Algorithmic Algebraic Model Checking. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)

    Google Scholar 

  41. Mysore, V., Mishra, B.: Algorithmic Algebraic Model Checking III: Approximate Methods. In: Infinity 2005. ENTCS, vol. 149(1), pp. 61–77 (2006)

    Google Scholar 

  42. Mysore, V., Piazza, C., Mishra, B.: Algorithmic Algebraic Model Checking II: Decidability of Semi-Algebraic Model Checking and its Applications to Systems Biology. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 217–233. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  43. Namjoshi, A.A., Doraiswami, R.: A cybernetic modeling framework for analysis of metabolic systems. Computers & chemical engineering 29(3), 487–498 (2005)

    Article  Google Scholar 

  44. Parrilo, P., Lall, S.: Semidefinite programming relaxations and algebraic optimization in control. European Journal of Control 9(2–3), 307–321 (2003)

    Article  Google Scholar 

  45. Petitjean, S.: Algebraic geometry and computer vision: Polynomial systems, real and complex roots. Journal of Mathematical Imaging and Vision 10, 191–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and their Reachability Analysis. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)

    Google Scholar 

  47. Ritt, J.F.: Differential Algebra, vol. XXXII. AMS Colloquium Publications, New York (1950)

    MATH  Google Scholar 

  48. Sauro, H.M.: The computational versatility of proteomic signaling networks. Current Proteomics 1, 67–81 (2004)

    Article  Google Scholar 

  49. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15, 296–303 (1999)

    Article  Google Scholar 

  50. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. PNAS 99(23), 15112–15117 (2002)

    Article  Google Scholar 

  51. Shlomi, T., Berkman, O., Ruppin, E.: Constraint-based modelling of perturbed organisms: A room for improvement. In: ISMB (2004)

    Google Scholar 

  52. Singh, S., Powers, J.M., Paolucci, S.: On slow manifolds of chemically reactive systems. The Journal of Chemical Physics 117(4), 1482–1496 (2002)

    Article  Google Scholar 

  53. Sturm, T.: Quantifier elimination-based constraint logic programming. Technical Report MIP-0202, Fakultät für Mathematik und Informatik, Universität Passau (2002)

    Google Scholar 

  54. Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20(4), 538–546 (2004)

    Article  Google Scholar 

  55. Tarski, A., Decision, A.: Method for Elementary Algebra and Geometry. University of California Press, 2nd edn. (1948)

    Google Scholar 

  56. Tiwari, A., Khanna, G.: Series of Abstraction for Hybrid Automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  57. Visser, D., van der Heijden, R., Mauch, K., Reuss, M., Heijnen, S.: Tendency modeling: A new approach to obtain simplified kinetic models of metabolism applied to s. cerevisiae. Metabolic Engineering 2, 252–275 (2000)

    Article  Google Scholar 

  58. Voit, E.O.: Computational Analysis of Biochemical Systems. A Pratical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  59. Voit, E.O.: The dawn of a new era of metabolic systems analysis. Drug Discovery Today: BioSilico 2(5), 182–189 (2004)

    Article  Google Scholar 

  60. Wallack, A., Emiris, I.Z., Manocha, D.: MARS: A MAPLE/MATLAB/c resultant-based solver. In: Intl. Symposium on Symbolic and Alg. Computation, pp. 244–251 (1998)

    Google Scholar 

  61. Weispfenning, V.: Simulation and optimization by quantifier elimination. J. Symb. Comput. 24(2), 189–208 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  62. Wu, W.-T.: On the decision problem and the mechanization of theorem proving in elementary geometry. Scientia Sinica 21(2), 159–172 (1978)

    MATH  MathSciNet  Google Scholar 

  63. Yanami, H., Anai, H.: Development of SyNRAC. In: Computer Algebra Systems and Applications, CASA (2005)

    Google Scholar 

  64. Yildirim, N.: Use of symbolic and numeric computation techniques in analysis of biochemical reaction networks. International Journal of Quantum Chemistry (2005)

    Google Scholar 

  65. Yugi, K., Nakayama, Y., Kinoshita, A., Tomita, M.: Hybrid dynamics/static method for large-scale simulation of metabolism. T. Biology and Medical Modelling, 2(42) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mysore, V., Mishra, B. (2007). Algorithmic Algebraic Model Checking IV: Characterization of Metabolic Networks . In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics