Skip to main content

Analyzing Pathways Using SAT-Based Approaches

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

Abstract

A network of reactions is a commonly used paradigm for representing knowledge about a biological process. How does one understand such generic networks and answer queries using them? In this paper, we present a novel approach based on translation of generic reaction networks to Boolean weighted MaxSAT. The Boolean weighted MaxSAT instance is generated by encoding the equilibrium configurations of a reaction network by weighted boolean clauses. The important feature of this translation is that it uses reactions, rather than the species, as the boolean variables. Existing weighted MaxSAT solvers are used to solve the generated instances and find equilibrium configurations. This method of analyzing reaction networks is generic, flexible and scales to large models of reaction networks. We present a few case studies to validate our claims.

This work was supported in part by Public Health Service grant GM068146-03 from the National Institute of General Medical Sciences and by the National Science Foundation under grants IIS-0513857 and CCR-0326540.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhalla, U.S., Iyengar, R.: Robustness of the bistable behavior of a biological signalling feedback loop. Chaos 11(1) (2001)

    Google Scholar 

  2. Bhalla, U.S., Ram, P.T., Iyengar, R.: MAP kinase phosphatase as a locus of flexibility in a Mitogen-Activated Protein kinase signaling network. Science 297 (2002)

    Google Scholar 

  3. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for dpll(t). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4(2), 64–73 (2004)

    Article  Google Scholar 

  5. Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., Karp, P.D.: EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research 33, D334–D347 (2005)

    Article  Google Scholar 

  6. Prescott, L.M., Klein, D.A., Harley, J.P.: Microbiology. McGraw-Hill, New York (2002)

    Google Scholar 

  7. Romero, P., Wagg, J., Green, M.L., Kaiser, D., Krummenacker, M., Karp, P.D.: Computational prediction of human metabolic pathways from the complete human genome. Genome Biology 6(R2), 1–17 (2004)

    Google Scholar 

  8. Senachak, J., Vestergaard, M., Vestergaard, R.: Rewriting game theory and protein signalling in MAPK cascades. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, Springer, Heidelberg (2006)

    Google Scholar 

  9. Shankland, C., Tran, N., Baral, C., Kolch, W.: Reasoning about the ERK signal transduction pathway using BioSigNet-RR. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (2005)

    Google Scholar 

  10. Stragier, P., Losick, R.: Molecular genetics of sporulation in bacillus subtilis. Annu. Rev. Genet. 30, 297–341 (1996)

    Article  Google Scholar 

  11. Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Proceedings of the Pacific Symposium on Biocomputing (January 2004)

    Google Scholar 

  12. Talcott, C.: Symbolic modeling of signal transduction in pathway logic. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) 2006 Winter Simulation Conference (2006)

    Google Scholar 

  13. Talcott, C., Dill, D.L.: Multiple representations of biological processes. Transactions on Computational Systems Biology VI 4220, 221–245 (2006)

    Article  MathSciNet  Google Scholar 

  14. Yices home page, http://yices.csl.sri.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K. (2007). Analyzing Pathways Using SAT-Based Approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics