Skip to main content

Efficient Haplotype Inference with Pseudo-boolean Optimization

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

Abstract

Haplotype inference from genotype data is a key computational problem in bioinformatics, since retrieving directly haplotype information from DNA samples is not feasible using existing technology. One of the methods for solving this problem uses the pure parsimony criterion, an approach known as Haplotype Inference by Pure Parsimony (HIPP). Initial work in this area was based on a number of different Integer Linear Programming (ILP) models and branch and bound algorithms. Recent work has shown that the utilization of a Boolean Satisfiability (SAT) formulation and state of the art SAT solvers represents the most efficient approach for solving the HIPP problem.

Motivated by the promising results obtained using SAT techniques, this paper investigates the utilization of modern Pseudo-Boolean Optimization (PBO) algorithms for solving the HIPP problem. The paper starts by applying PBO to existing ILP models. The results are promising, and motivate the development of a new PBO model (RPoly) for the HIPP problem, which has a compact representation and eliminates key symmetries. Experimental results indicate that RPoly outperforms the SAT-based approach on most problem instances, being, in general, significantly more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, D., Harrower, I.: A new integer programming formulation for the pure parsimony problem in haplotype analysis. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 254–265. Springer, Heidelberg (2004)

    Google Scholar 

  2. Brown, D., Harrower, I.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(2), 141–154 (2006)

    Article  Google Scholar 

  3. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High-resolution haplotype structure in the human genome. Nature Genetics 29, 229–232 (2001)

    Article  Google Scholar 

  4. Drysdale, C.M., McGraw, D.W., Stack, C.B., Stephens, J.C., Judson, R.S., Nandabalan, K., Arnold, K., Ruano, G., Liggett, S.B.: Complex promoter and coding region β 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. In: Proceedings of the National Academy of Sciences of the United States of America 97, pp. 10483–10488 (2000)

    Google Scholar 

  5. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  6. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Gusfield, D., Orzach, S. (eds.): Handbook on Computational Molecular Biology. Chapman and Hall/CRC Computer and Information Science Series, chapter Haplotype Inference, vol. 9. CRC Press, Boca Raton (2005)

    Google Scholar 

  8. Halldórsson, B., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) Computational Methods for SNPs and Haplotype Inference. LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)

    Google Scholar 

  9. Kroetz, D.L., Pauli-Magnus, C., Hodges, L.M., Huang, C.C., Kawamoto, M., Johns, S.J., Stryke, D., Ferrin, T.E., DeYoung, J., Taylor, T., Carlson, E.J., Herskowitz, I., Giacomini, K.M., Clark, A.G.: Sequence diversity and haplotype structure in the human ABCD1 (MDR1, multidrug resistance transporter). Pharmacogenetics 13, 481–494 (2003)

    Article  Google Scholar 

  10. Lancia, G., Pinotti, C.M., Rizzi, R.: Haplotyping populations by pure parsimony: complexity of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)

    Article  MathSciNet  Google Scholar 

  11. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with Boolean satisfiability. In: National Conference on Artificial Intelligence (AAAI) (July 2006)

    Google Scholar 

  12. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: Making the case with haplotype inference. In: International Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 136–141 (August 2006)

    Google Scholar 

  13. Manquinho, V., Roussel, O.: The first evaluation of Pseudo-boolean solvers (PB’05). Journal on Satisfiability, Boolean Modeling and Computation 2, 103–143 (2006)

    MATH  Google Scholar 

  14. Rieder, M.J., Taylor, S.T., Clark, A.G., Nickerson, D.A.: Sequence variation in the human angiotensin converting enzyme. Nature Genetics 22, 59–62 (1999)

    Article  Google Scholar 

  15. Schaffner, S., Foo, C., Gabriel, S., Reich, D., Daly, M., Altshuler, D.: Calibrating a coalescent simulation of human genome sequence variation. Genome Reasearch 15, 1576–1583 (2005)

    Article  Google Scholar 

  16. Stephens, M., Smith, N., Donelly, P.: A new statistical method for haplotype reconstruction. American Journal of Human Genetics 68, 978–989 (2001)

    Article  Google Scholar 

  17. The International HapMap Consortium. A haplotype map of the human genome. Nature, 437, 1299–1320 (2005)

    Google Scholar 

  18. Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L. (2007). Efficient Haplotype Inference with Pseudo-boolean Optimization. In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics