Skip to main content

SciAutonics-Auburn Engineering’s Low Cost High Speed ATV for the 2005 DARPA Grand Challenge

  • Chapter
The 2005 DARPA Grand Challenge

Abstract

This paper presents a summary of SciAutonics-Auburn Engineering’s efforts in the 2005 DARPA Grand Challenge. The areas discussed in detail include the team makeup and strategy, vehicle choice, software architecture, vehicle control, navigation, path planning, and obstacle detection. In particular, the advantages and complications involved in fielding a low budget all-terrain vehicle are presented. Emphasis is placed on detailing the methods used for high-speed control, customized navigation, and a novel stereo vision system. The platform chosen required a highly accurate model and a well-tuned navigation system in order to meet the demands of the Grand Challenge. Overall, the vehicle completed three out of four runs at the National Qualification Event and traveled 16 miles in the Grand Challenge before a hardware failure disabled operation. The performance in the events is described, along with a success and failure analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behringer, R., Gregory, B., Sundareswaran, V., Addison, B., Elsley, R., Guthmiller, W., deMarchi, J., Daily, R., Bevly, D., Reinhart C. (2004, July). Development of an Autonomous Road Vehicle for the DARPA Grand Challenge. IFAC Symposium on Intelligent Autonomous Vehicles 2004. Lisbon, Portugal.

    Google Scholar 

  • Behringer, R., Sundareswaran, V., Gregory, B., Elsley, R., Addison, B., Guthmiller, W., Daily, R., Bevly D. (2004, June). The DARPA Grand Challenge — Development of an Autonomous Vehicle. IEEE Symposium on Intelligent Vehicles 2004. Parma, Italy.

    Google Scholar 

  • Behringer R., Travis, W., Daily, R., Bevly, D., Kubinger, W., Herzner, W., Fehlberg, V. (2005, September). RASCAL — An Autonomous Ground Vehicle for Desert Driving in the DARPA Grand Challenge 2005. IEEE ITSC 2005. Vienna, Austria.

    Google Scholar 

  • Bevly, D. (2004). Global Positioning System (GPS): A Low-Cost Velocity Sensor for Correcting Inertial Sensor Errors on Ground Vehicles. Journal of System Dynamics, Measurement, and Control, Vol. 126. pp 255–264.

    Article  Google Scholar 

  • Farrell, J., Barth, M. (1999). The Global Positioning System and Inertial Navigation. New York, NY: McGraw-Hill Companies, Inc.

    Google Scholar 

  • Gillespie, T. (1992). Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers.

    Google Scholar 

  • Koenig, N., Howard, A. (2004, September). Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. IEEE International Conference on Intelligent Robots and Systems. Sendai, Japan.

    Google Scholar 

  • Labayrade, R., Aubert, D., Tarel, J. (2002, June). Real Time Obstacle Detection in Stereo Vision on Non-Flat Road Geometry Through “V-Disparity” Representation. IEEE International Vehicle Symposium. Versailles, France.

    Google Scholar 

  • Ljung, L. (1999). System Identification: Theory for the User, 2nd ed. Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  • Postel, J. (1980). RFC 768 — User Datagram Protocol. St. Pierre, M., Gingras, D. (2004, June). Comparison Between the Unscented Kalman Filter and the Extended Kalman Filter for the Position Estimation Module of an Integrated Navigation Information System. IEEE Symposium on Intelligent Vehicles 2004. Parma, Italy.

    Google Scholar 

  • Stengal, R. (1994). Optimal Control and Estimation. Mineola, NY: Dover Publications. Travis, W. (2006). Methods for Minimizing Navigation Errors Induced by Ground Vehicle Dynamics. M.S. thesis, Auburn University, Auburn, Alabama.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daily, R. et al. (2007). SciAutonics-Auburn Engineering’s Low Cost High Speed ATV for the 2005 DARPA Grand Challenge. In: Buehler, M., Iagnemma, K., Singh, S. (eds) The 2005 DARPA Grand Challenge. Springer Tracts in Advanced Robotics, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73429-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73429-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73428-4

  • Online ISBN: 978-3-540-73429-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics