Skip to main content

A Mixture-Model Based Algorithm for Real-Time Terrain Estimation

  • Chapter
The 2005 DARPA Grand Challenge

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 36))

Abstract

A real-time terrain mapping and estimation algorithm using Gaussian sum elevation densities to model terrain variations in a planar gridded elevation model is presented. A formal probabilistic analysis of each individual sensor measurement allows the modeling of multiple sources of error in a rigorous manner. Measurements are associated to multiple locations in the elevation model using a Gaussian sum conditional density to account for uncertainty in measured elevation as well as uncertainty in the in-plane location of the measurement. The approach is constructed such that terrain estimates and estimation error statistics can be constructed in real-time without maintaining a history of sensor measurements. The algorithm is validated experimentally on the 2005 Cornell University DARPA Grand Challenge ground vehicle, demonstrating accurate and computationally feasible elevation estimates on dense terrain models, as well as estimates of the errors in the terrain model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, F. (1999). Airborne laser scanning-present status and future expectations. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 64–67.

    Article  Google Scholar 

  • Arakawa, K., & Krotkov, E. (1992). Fractal surface reconstruction with uncertainty estimation: Modeling natural terrain (Tech. Rep. No. CMU-CS-92-194). Pittsburgh: School of Computer Science, Carnegie Mellon University.

    Google Scholar 

  • Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002, February). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.

    Article  Google Scholar 

  • Axelsson, P. (1999). Processing of laser scanner data-algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 138–147.

    Article  Google Scholar 

  • Bar-Shalom, Y., Kirubarajan, T., & Lin, X. (2003). Probabilistic data association techniques for target tracking with applications to sonar, radar, and eo sensors. IEEE Systems Magazine.

    Google Scholar 

  • Bar-Shalom, Y., Rong Li, X., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory, algorithms and software. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • El-Hakim, S., Whiting, E., Gonzo, L., & Girardi, S. (2005, August). 3-d reconstruction of complex architectures from multiple data. In Proceedings of the isprs working group v/4 workshop. Venice-Mestre, Italy: International Society for Photogrammetry and Remote Sensing.

    Google Scholar 

  • Hähnel, D., Burgard, W., & Thrun, S. (2004). Learning compact 3d models of indoor and outdoor environments with a mobile robot. Elsevier Science Special Issue Eurobot’ 01, 1-16.

    Google Scholar 

  • Huising, E., & Pereira, L. (1998). Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 245–261.

    Article  Google Scholar 

  • Julier, S., & Uhlmann, J. (1996, November). A general method for approximating nonlinear transformations of probability distributions (Tech. Rep.). Oxford: Department of Engineering Science, University of Oxford.

    Google Scholar 

  • Kaplan, E. (Ed.). (1996). Understanding gps: Principles and applications. Boston: Artech House.

    Google Scholar 

  • Kirubarajan, T., & Bar-Shalom, Y. (2004, March). Probabilistic data association techniques for target tracking in clutter. Proceedings of the IEEE, 92(3).

    Google Scholar 

  • Lacroix, S., Mallet, D., Bonnafous, G., Bauzil, S., Fleury, S., Herrb, M., et al. (2002). Autonomous rover navigation on unknown terrains: Functions and integration. Interjational Journal of Robotics Research, 21(10–11), 917–942.

    Article  Google Scholar 

  • Leal, J. (2003). Stochastic environment representation. PhD Thesis, University of Sydney. (Australian Centre for Field Robotics)

    Google Scholar 

  • Lms 200, lms 211, lms 220, lms 221, lms 291 laser measurement systems technical description (Technical Description No. 8 008 970/06-2003). (2003, June).

    Google Scholar 

  • Lohmann, P., Koch, A., & Schaeffer, M. (2000). Approaches to the filtering of laser scanner data. Interanational Archives of Photogrammetry and Remote Sensing, 33.

    Google Scholar 

  • Marsden, J., & Weinstein, A. (1985). Calculus 1 (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  • Martin, M., & Moravec, H. (1996, March). Robot evidence grids (Tech. Rep. No. CMURI-TR-96-06). Pittsburgh: The Robotics Institute, Carnegie Mellon University.

    Google Scholar 

  • Miller, I., Lupashin, S., Zych, N., Moran, P., Schimpf, B., Nathan, A., et al. (2006). Cornell university’s 2005 darpa grand challenge entry. Journal of Field Robotics. (To appear)

    Google Scholar 

  • Moon, F. (1998). Applied dynamics with application to multibody and mechatronic systems. New York: John Wiley and Sons.

    Google Scholar 

  • Morin, K. (2002). Calibration of airborne laser scanners. Unpublished doctoral dissertation, University of Calgary.

    Google Scholar 

  • Murray, R., Li, Z., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • NIMA. (2000). Digital terrain elevation data (DTED). (http://www.fas.org/irp/program/core/dted.htm)

  • Olin, K., & Tseng, D. (1991, August). Autonomous cross-country navigation: An integrated perception and planning system. IEEE Expert: Intelligent Systems and Their Applications, 6(4), 16–30.

    Google Scholar 

  • Pagac, D., Nebot, E., & Durrant-Whyte, H. (1998, August). An evidential approach to map-building for autonomous vehicles. IEEE Transactions on Robotics and Automation, 14(4).

    Google Scholar 

  • Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle River: Pearson Education, Inc.

    Google Scholar 

  • Satale, D., & Kulkarni, M. (2003). Lidar in mapping. In Proceedings of the 2003 map india poster session. New Delhi, India: GISdevelopment.

    Google Scholar 

  • Stoker, J. (2004, May). Voxels as a representation of multiple-return lidar data. In Asprs annual conference proceedings. Bethesda, MD: American Society for Photogrammetry and Remote Sensing.

    Google Scholar 

  • Team Cornell. (2005, December). Technical review of team cornell’s spider: Darpa grand challenge 2005 [Technical Review]. (http://www.darpa.mil/grandchallenge05/TechPapers/TeamCornell.pdf)

  • Thrun, S. (2002, February). Robotic mapping: A survey (Tech. Rep. No. CMU-CS-02-111). Pittsburgh: School of Computer Science, Carnegie Mellon University.

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2000). A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proceedings of the ieee international conference on robotics and automation (icra). San Francisco, CA: IEEE.

    Google Scholar 

  • Weingarten, J., & Siegwart, R. (2005). Ekf-based 3d slam for structured environment reconstruction. In Proceedings of the ieee / rsj international workshop on intelligent robots and systems (p. 3834–3839). Los Alamitos: Institute of Electrical and Electronic Engineers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, I., Campbell, M. (2007). A Mixture-Model Based Algorithm for Real-Time Terrain Estimation. In: Buehler, M., Iagnemma, K., Singh, S. (eds) The 2005 DARPA Grand Challenge. Springer Tracts in Advanced Robotics, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73429-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73429-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73428-4

  • Online ISBN: 978-3-540-73429-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics