Skip to main content

A Characterization of Non-interactive Instance-Dependent Commitment-Schemes (NIC)

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

Abstract

We provide a new characterization of certain zero-knowledge protocols as non-interactive instance-dependent commitment-schemes (NIC). To obtain this result we consider the notion of V-bit protocols, which are very common, and found many applications in zero-knowledge. Our characterization result states that a protocol has a V-bit zero-knowledge protocol if and only if it has a NIC. The NIC inherits its hiding property from the zero-knowledge property of the protocol, and vice versa.

Our characterization result yields a framework that strengthens and simplifies many zero-knowledge protocols in various settings. For example, applying this framework to the result of Micciancio et al. [18] (who showed that some problems, including Graph-Nonisomorphism and Quadratic-Residuousity, unconditionally have a concurrent zero-knowledge proof) we easily get that arbitrary, monotone boolean formulae over a large class of problems (which contains, e.g., the complement of any random self-reducible problem) unconditionally have a concurrent zero-knowledge proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Håstad, J.: Statistical zero-knowledge languages can be recognized in two rounds. J. of Computer and System Sciences 42(3), 327–345 (1991)

    Article  MATH  Google Scholar 

  2. Angluin, D., Lichtenstein, D.: Provable security in cryptosystems: a survey. Technical Report 288, Department of Computer Science, Yale University (1983)

    Google Scholar 

  3. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)

    Google Scholar 

  4. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds. In: 22nd STOC, pp. 482–493 (1990)

    Google Scholar 

  5. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the ICM, pp. 1444–1451 (1986)

    Google Scholar 

  6. Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Inf. Process. Lett. 25(2), 127–132 (1987)

    Article  MATH  Google Scholar 

  7. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and Uni. of Amsterdam (1996)

    Google Scholar 

  8. Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Public Key Cryptography, pp. 354–372 (2000)

    Google Scholar 

  9. Dåmgard, I., Cramer, R.: On monotone function closure of perfect and statistical zero-knowledge (1996)

    Google Scholar 

  10. Damgård, I.B.: On the existence of bit commitment schemes and zero-knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 17–27. Springer, Heidelberg (1990)

    Google Scholar 

  11. Damgård, I.B.: On Σ-protocols (2005), available online at www.daimi.au.dk/~ivan/Sigma.pdf

  12. Fortnow, L.: The complexity of perfect zero-knowledge. In: Micali, S. (ed.) Advances in Computing Research, vol. 5, pp. 327–343. JAC Press (1989)

    Google Scholar 

  13. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive. J. Cryptology 10(1), 37–50 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Micali, S., Pass, R.: Local zero knowledge. In: STOC, pp. 306–315 (2006)

    Google Scholar 

  18. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.P.: Concurrent zero knowledge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

    Google Scholar 

  20. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)

    Article  MATH  Google Scholar 

  21. Nguyen, M.-H., Vadhan, S.: Zero knowledge with efficient provers. In: STOC 2006. Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, Seattle, WA, USA, pp. 287–295. ACM Press, New York (2006)

    Chapter  Google Scholar 

  22. Ong, S.J., Vadhan, S.: Zero knowledge and soundness are symmetric. Electronic Colloquium on Computational Complexity (ECCC) (TR06-139) (2006)

    Google Scholar 

  23. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)

    Google Scholar 

  24. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero-knowledge. J. ACM 50(2), 196–249 (2003)

    Article  MathSciNet  Google Scholar 

  25. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula closure of SZK. In: IEEE Symposium on Foundations of Computer Science, pp. 454–465. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  26. Tompa, M., Woll, H.: Random self-reducibility and zero-knowledge interactive proofs of possession of information. In: 28th FOCS, pp. 472–482 (1987)

    Google Scholar 

  27. Vadhan, S.P.: An unconditional study of computational zero knowledge. In: FOCS, pp. 176–185 (2004)

    Google Scholar 

  28. Watrous, J.: Zero-knowledge against quantum attacks. In: STOC, pp. 296–305 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kapron, B., Malka, L., Srinivasan, V. (2007). A Characterization of Non-interactive Instance-Dependent Commitment-Schemes (NIC). In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics