Skip to main content

Some Applications and Methods of Large Deviations in Finance and Insurance

  • Chapter
Paris-Princeton Lectures on Mathematical Finance 2004

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1919))

In these notes, we present some methods and applications of large deviations to finance and insurance. We begin with the classical ruin problem related to the Cramer’s theorem and give en extension to an insurance model with investment in stock market. We then describe how large deviation approximation and importance sampling are used in rare event simulation for option pricing. We finally focus on large deviations methods in risk management for the estimation of large portfolio losses in credit risk and portfolio performance in market investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akian M., Gaubert S. and V. Kolokoltsov (2005): “Solutions of max-plus linear equations and large deviations”, Proceedings of the joint 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005.

    Google Scholar 

  2. Arouna B. (2004): “Adaptative Monte-Carlo methods, a variance reduction technique”, Monte-carlo Methods and Applications, 10, 1-24.

    Article  MATH  MathSciNet  Google Scholar 

  3. Asmussen S. (2000): Ruin Probabilities, World Scientific.

    Google Scholar 

  4. Asmussen S. and C. Kluppelberg. (1996): “Large deviation results for subexponential tails, with applications to insurance risk”, Stoch. Proc. Appl. 64, 103-125.

    Article  MATH  MathSciNet  Google Scholar 

  5. Astic F. and S. Rainero (2006): “Conditional large deviations and applications to credit risk management”, Preprint University Paris Dauphine.

    Google Scholar 

  6. Avellaneda M., Boyer-Olson D., Busca J. and P. Friz (2003): “Méthodes de grandes déviations et pricing d’options sur indice”, C.R. Acad. Sci. Paris, 336, 263-266.

    MATH  MathSciNet  Google Scholar 

  7. Baldi P., Caramellino L. and M. Iovino (1999): “Pricing general barrier options: a numerical approach using sharp large deviations”, Mathematical Finance, 9, 293-322.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bares P., Cont R., Gardiol L., Gibson R. and S. Gyger (2000): “A large deviation approach to portfolio management”, International Journal of Theoretical and Applied Finance, 3, 617-639.

    Article  MATH  MathSciNet  Google Scholar 

  9. Barles G. (1994): Solutions de viscosité des équations d’Hamilton-Jacobi, Springer Verlag.

    Google Scholar 

  10. Bielecki T. and S. Piska (2004): “Risk-sensitive ICAPM with application to fixed-income management”, IEEE Transactions on automatic control, 49, 420-432.

    Article  Google Scholar 

  11. Browne S. (1999): “Beating a moving target : optimal portfolio strategies for outperforming a stochastic benchmark”, Finance and Stochastics, 3, 275-294.

    Article  MATH  MathSciNet  Google Scholar 

  12. Dembo A., Deuschel J.D. and D. Duffie (2004), “Large portfolio losses”, Finance and Stochastics, 8, 3-16.

    Article  MATH  MathSciNet  Google Scholar 

  13. Dembo A. and O. Zeitouni (1998): Large deviations techniques and applications, 2nd edition, Springer Verlag.

    Google Scholar 

  14. Djehiche B. (1993): “A large deviation estimate for ruin probabilities”, Scandinavian Actuarial Journal, 1, 42-59.

    MathSciNet  Google Scholar 

  15. Dupuis P. and R. Ellis (1997): A weak convergence approach to the theory of large deviations, Wiley Series in Probability and Statistics.

    Google Scholar 

  16. Embrechts P., Kluppelberg C. and T. Mikosch (2003), Modelling extremal events for insurance and finance, 4th edition, Springer Verlag.

    Google Scholar 

  17. Fleming W. and M. James (1992): “Asymptotic series and exit time probability”, Annals of Probability, 20, 1369-1384.

    Article  MATH  MathSciNet  Google Scholar 

  18. Fleming W. and W. McEneaney (1995): “Risk sensitive control on an infinite time horizon”, SIAM Journal on Control and Optimization, 33, 1881-1915.

    Article  MATH  MathSciNet  Google Scholar 

  19. Fleming W. and M. Soner (1994): Controlled Markov processes and viscosity solutions, Springer Verlag.

    Google Scholar 

  20. Föllmer H. and P. Leukert (1999): “Quantile hedging”, Finance and Stochastics, 3, 251-273.

    Article  MATH  MathSciNet  Google Scholar 

  21. Fournié E., Lasry J.M. and P.L. Lions (1997): “Some nonlinear methods to study far-from-the-money contingent claims”, Numerical Methods in Finance, L.C.G. Rogers et D. Talay, eds, Cambridge University Press.

    Google Scholar 

  22. Fournié E., Lasry J.M. and N. Touzi (1997): “Monte Carlo methods for stochastic volatility models”, Numerical Methods in Finance, L.C.G. Rogers et D. Talay, eds, Cambridge University Press.

    Google Scholar 

  23. Gaier J., Grandits P. and W. Schachermayer (2003): “Asymptotic ruin probabilities and optimal investment”, Annals of Applied Probability, 13, 1054-1076.

    Article  MATH  MathSciNet  Google Scholar 

  24. Gerber H. (1973): “Martingales in risk theory”, Mitt. Ver. Schweiz. math., 73, 205-216.

    MathSciNet  Google Scholar 

  25. Glasserman P., Heidelberger P. and P. Shahabuddin (1999), “Asymptotically optimal importance sampling and stratification for pricing path-dependent options”, Mathematical finance, 9, 117-152.

    Article  MATH  MathSciNet  Google Scholar 

  26. Glasserman P., Kang W. and P. Shahabuddin (2006), “Large deviations in multifactor portfolio credit risk”, to appear in Mathematical Finance.

    Google Scholar 

  27. Glasserman P. and J. Li (2005), “Importance sampling for portfolio credit risk”, Management science, 51, 1643-1656.

    Article  Google Scholar 

  28. Gobet E. (2000): “Weak approximations of killed diffusion using Euler schemes”, Stochastic Processes and their Applications, 87, 167-197.

    Article  MATH  MathSciNet  Google Scholar 

  29. Guasoni P. and S. Robertson (2006): “Optimal importance sampling with explicit formulas in continuous-time”, Preprint, Boston University.

    Google Scholar 

  30. Hata H. and J. Sekine (2005): “Solving long term invesmtment problems with CoxIngersoll-Ross interest rates”, Advances in Mathematical Economics, 8, 231-255.

    Article  Google Scholar 

  31. Hipp C. and H. Schmidli (2004): “Asymptotics of ruin probabilities for controlled risk processes in the small claims case”, Scandinavian Actuarial Journal, 321-335.

    Google Scholar 

  32. Huh J. and A. Kolkiewicz (2006): “Efficient computation of multivariate barrier crossing probability and its applications in credit risk models”, Preprint University of Waterloo.

    Google Scholar 

  33. Kaas R. and Q. Tang (2005): “A large deviation result for aggregate claims with dependent claims occurences”, Insurance Mathematics and Economics, 36, 251-259.

    Article  MATH  MathSciNet  Google Scholar 

  34. Lasry J.M. and P.L. Lions (1995): “Grandes déviations pour des processus de diffusion couplés par un processus de sauts”, CRAS, t. 321, 849-854.

    MATH  MathSciNet  Google Scholar 

  35. Macci C. and G. Stabile (2006): “Large deviations for risk processes with reinsurance”, Journal of Applied Probability, 43, 713-728.

    Article  MATH  MathSciNet  Google Scholar 

  36. Pham H. (2003a): “A large deviations approach to optimal long term investment”, Finance and Stochastics, 7, 169-195.

    Article  MATH  MathSciNet  Google Scholar 

  37. Pham H. (2003b): “A risk-sensitive control dual approach to a large deviations control problem”, Systems and Control Letters, 49, 295-309.

    Article  MATH  MathSciNet  Google Scholar 

  38. Sornette D. (1998): “Large deviations and portfolio optimization”, Physica A : Statistical and Theoretical Physics, 256, 251-283.

    Article  MathSciNet  Google Scholar 

  39. Stettner L. (2004): “Duality and risk sensitive portfolio optimization”, in Mathematics of Finance, Proceedings AMS-IMS-SIAM, eds G. Yin and Q. Zhang, 333-347.

    Google Scholar 

  40. Stutzer M. (2003): “Portfolio choice with endogenous utility : a large deviations approach”, Journal of Econometrics, 116, 365-386.

    Article  MATH  MathSciNet  Google Scholar 

  41. Williams N. (2004): “Small Noise Asymptotics for a Stochastic Growth Model”, Journal of Economic Theory, 119, 271-298.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pham, H. (2007). Some Applications and Methods of Large Deviations in Finance and Insurance. In: Paris-Princeton Lectures on Mathematical Finance 2004. Lecture Notes in Mathematics, vol 1919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73327-0_5

Download citation

Publish with us

Policies and ethics