Skip to main content

Pharmakologie und Pharmakokinetik von Nikotin

  • Chapter
Tabakabhängigkeit
  • 2783 Accesses

Abstract

•Nikotin ist eines der am stärksten toxisch wirkenden Alkaloide mit einer Sucht erzeugenden Wirkung, die mit der von Kokain und Heroin zu vergleichen ist. Bei fortgesetzter Zufuhr in Form des Tabakrauchens (insbesondere von Zigaretten) kann es zur Abhängigkeit führen.

•Seine Wirkungen entfaltet Nikotin über die Freisetzung von Botenstoffen im ZNS, von denen Dopamin, Noradrenalin und 5-Hydroxytryptamin eine besondere Rolle spielen.

•Nikotin wirkt über die Stimulation von nikotinergen Acetylcholinrezeptoren (nAChR). Hierbei handelt es sich um Ionentransporter, die im zentralen und peripheren Nervensystem vorkommen und mit verschiedenen Transmittersystemen verknüpft sind. Die Struktur der nAChR ist weitgehend aufgeklärt und die verschiedenen Subeinheiten (α4β2, α3β4, α7 etc.) können verschiedenen nervalen Strukturen zugeordnet werden. Die Angriffspunkte von Agonisten und kompetitiven bzw. nichtkompetitiven Antagonisten lassen sich im Rezeptorsystem lokalisieren.

•Pharmakokinetische Untersuchungen mit Nikotinpräparaten berücksichtigen zumeist die Plasmaspiegel in ihrem zeitlichen Verlauf, während in klinischen Studien auch die Cotininplasmaspiegel wichtige Aussagen liefern.

•Im Gegensatz zur Aufnahme von Zigarettennikotin wird das aus galenischen Präparaten verfügbare Nikotin abhängig von der Zubereitungsform sehr viel langsamer und zu einem geringeren Anteil freigesetzt, was letztlich auch der Grund dafür ist, dass diese Präparate keine Abhängigkeit erzeugen.

•Neben äußeren Faktoren ist die Ausbildung der Nikotinabhängigkeit auch auf genetische Faktoren zurückzuführen. Dabei spielt das Zytochrom-P450-Subenzym 2A6, die Verteilung von Dopaminrezeptoren (DRD1 und DRD2) und deren Allelen (A1 und A2), aber auch das Dopamintransportergen SLC6A3 eine Rolle für den Start einer Raucherkarriere und die Nikotinabhängigkeit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Langley JN, Anderson HK. The actions of nicotine on the ciliary ganglion of the third cranial nerve. J Physiol (Lond) 1892; 13: 460–468.

    CAS  Google Scholar 

  2. Dale HH. The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol Exp Ther 1914; 6:147–190.

    CAS  Google Scholar 

  3. Karlin A. Structure of nicotinic acetylcholine receptors. Curr Opin Neurobiol 1993; 3(3): 299–309.

    PubMed  CAS  Google Scholar 

  4. McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 1995; 57: 521–546.

    PubMed  CAS  Google Scholar 

  5. Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. Neuron 1998; 21: 959–980.

    PubMed  CAS  Google Scholar 

  6. Role LW, Berg DK. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 1996; 16: 1077–1085.

    PubMed  CAS  Google Scholar 

  7. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997; 20: 92–98.

    PubMed  CAS  Google Scholar 

  8. Barrantes FJ. Molecular pathology of three nicotinic acetylcholine receptor. In: FJ Barrantes (ed). The nicotine acetylcholine receptor. Current views and future trends. Berlin-Heidelberg-New York: Springer-Verlag, 1998: 175–216.

    Google Scholar 

  9. Wonnacott S. Characterization of brain nicotinic receptor sites. In: Wonnacott S (ed) Nicotine psychopharmacology: molecular, cellular and behavioural aspects. London: Oxford University Press, 1990, pp 226–277.

    Google Scholar 

  10. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41: 31–37.

    PubMed  CAS  Google Scholar 

  11. Williams N, Sullivan JP, Arneric SP. Neuronal nicotinic acetylcholine receptors. DN&P 1994; 7: 205–223.

    Google Scholar 

  12. Wonnacott S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 1990; 11(6): 216–219.

    PubMed  CAS  Google Scholar 

  13. Chen D, Patrick JW. The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem 1997; 272: 24024–24029.

    PubMed  CAS  Google Scholar 

  14. Ryan RE, Loiacono RE. Nicotine regulates alpha7 nicotinic receptor subunit mRNA: implications for nicotine dependence. Neuroreport 2001; 12(3): 569–572.

    PubMed  CAS  Google Scholar 

  15. Nomikos GG, Schilstrom B, Hildebrand BE, Panagis G, Grenhoff J, Svensson TH. Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behav Brain Res 2000; 113(1–2): 97–103.

    PubMed  CAS  Google Scholar 

  16. Grutter T, Changeux JP. Nicotinic receptors in wonderland. Trends Biochem Sci 2001; 26(8): 459–463.

    PubMed  CAS  Google Scholar 

  17. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C et al. Nicotine activation of alpha4 receptors: sufficient for reward, tolerance, and sensitization. Science 2004; 306(5698): 1029–1032.

    PubMed  CAS  Google Scholar 

  18. Corringer PJ, Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 2000; 40: 431–458.

    PubMed  CAS  Google Scholar 

  19. Lena C, Changeux JP. Allosteric modulations of the nicotinic acetylcholine receptor. Trends Neurosci 1993; 16(5): 181–186.

    PubMed  CAS  Google Scholar 

  20. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269(5231): 1692–1696.

    PubMed  CAS  Google Scholar 

  21. Kuryatov A, Olale FA, Choi C, Lindstrom J. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation. Eur J Pharmacol 2000; 393(1–3): 11–21.

    PubMed  CAS  Google Scholar 

  22. Bikadi Z, Simonyi M. Muscarinic and nicotinic cholinergic agonists: structural analogies and discrepancies. Curr Med Chem 2003; 10(23): 2611–2620.

    PubMed  CAS  Google Scholar 

  23. Ferretti G, Dukat M, Giannella M, Piergentili A, Pigini M, Quaglia W et al. Homoazanicotine: a structure-affinity study for nicotinic acetylcholine (nACh) receptor binding. J Med Chem 2002; 45(21): 4724–4731.

    PubMed  CAS  Google Scholar 

  24. Sallette J, Bohler S, Benoit P, Soudant M, Pons S, Le Novere N et al. An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. J Biol Chem 2004; 279(18): 18767–18775.

    PubMed  CAS  Google Scholar 

  25. Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 1988; 50(4): 1243–1247.

    PubMed  CAS  Google Scholar 

  26. Collins AC, Luo Y, Selvaag S, Marks MJ. Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion. J Pharmacol Exp Ther 1994; 271(1): 125–133.

    PubMed  CAS  Google Scholar 

  27. Wilkie GI, Hutson PH, Stephens MW, Whiting P, Wonnacott S. Hippocampal nicotinic autoreceptors modulate acetylcholine release. Biochem Soc Trans 1993; 21(2): 429–431.

    PubMed  CAS  Google Scholar 

  28. Clarke PB, Reuben M. Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 1996; 117(4): 595–606.

    PubMed  CAS  Google Scholar 

  29. Grady S, Marks MJ, Wonnacott S, Collins AC. Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 1992; 59(3): 848–856.

    PubMed  CAS  Google Scholar 

  30. Yang X, Criswell HE, Simson P, Moy S, Breese GR. Evidence for a selective effect of ethanol on N-methyl-d-aspartate responses: ethanol affects a subtype of the ifenprodil-sensitive N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 1996; 278(1): 114–124.

    PubMed  CAS  Google Scholar 

  31. Clarke PB. Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Prog Brain Res 1993; 98: 77–83.

    PubMed  CAS  Google Scholar 

  32. Garza R de la, Bickford-Wimer PC, Hoffer BJ, Freedman R. Heterogeneity of nicotine actions in the rat cerebellum: an in vivo electrophysiologic study. J Pharmacol Exp Ther 1987; 240(2): 689–695.

    Google Scholar 

  33. Court J, Clementi F. Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord 1995; 9 (Suppl 2): 6-14.

    PubMed  Google Scholar 

  34. Narayanan U, Birru S, Vaglenova J, Breese CR. Nicotinic receptor expression following nicotine exposure via maternal milk. Neuroreport 2002; 13(7): 961–963.

    PubMed  CAS  Google Scholar 

  35. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004; 74(6): 363–396.

    PubMed  CAS  Google Scholar 

  36. Zhang J, Steinbach JH. Cytisine binds with similar affinity to nicotinic alpha4beta2 receptors on the cell surface and in homogenates. Brain Res 2003; 959(1): 98–102.

    PubMed  CAS  Google Scholar 

  37. Gotti C, Moretti M, Maggi R, Longhi R, Hanke W, Klinke N et al. Alpha7 and alpha8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. Eur J Neurosci 1997; 9: 1201–1211.

    PubMed  CAS  Google Scholar 

  38. Anderson DJ, Arneric SP. Nicotinic receptor binding of [3H]cytisine, [3H]nicotine and [3H]methylcarbamylcholine in rat brain. Eur J Pharmacol 1994; 253: 261–267.

    PubMed  CAS  Google Scholar 

  39. Dwoskin LP, Sumithran SP, Zhu J, Deaciuc AG, Ayers JT, Crooks PA. Subtype-selective nicotinic receptor antagonists: potential as tobacco use cessation agents. Bioorg Med Chem Lett 2004; 14(8): 1863–1867.

    PubMed  CAS  Google Scholar 

  40. Carroll FI, Ware R, Brieaddy LE, Navarro HA, Damaj MI, Martin BR. Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2’-fluoro-3’-(substituted phenyl)deschloroepibatidine analogues. Novel nicotinic antagonist. J Med Chem 2004; 47(18): 4588–4594.

    PubMed  CAS  Google Scholar 

  41. Cohen C, Bergis OE, Galli F, Lochead AW, Jegham S, Biton B et al. SSR591813, a novel selective and partial alpha4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation. J Pharmacol Exp Ther 2003; 306(1): 407–420.

    PubMed  CAS  Google Scholar 

  42. Slater YE, Houlihan LM, Maskell PD, Exley R, Bermudez I, Lukas RJ et al. Halogenated cytisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes. Neuropharmacology 2003; 44(4): 503–515.

    PubMed  CAS  Google Scholar 

  43. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC. Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 1997; 280: 346–356.

    PubMed  CAS  Google Scholar 

  44. Markou A, Paterson NE. The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine Tob Res 2001; 3(4): 361–373.

    PubMed  CAS  Google Scholar 

  45. Papke RL, Sanberg PR, Shytle RD. Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther 2001; 297: 646–656.

    PubMed  CAS  Google Scholar 

  46. Popik P, Layer RT, Fossom LH, Benveniste M, Geter-Douglass B, Witkin JM et al. NMDA antagonist properties of the putative antiaddictive drug, ibogaine. J Pharmacol Exp Ther 1995; 275: 753–760.

    PubMed  CAS  Google Scholar 

  47. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 2000; 295(1): 321–327.

    PubMed  CAS  Google Scholar 

  48. Yamakura T, Chavez-Noriega LE, Harris RA. Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine. Anesthesiology 2000; 92(4): 1144–1153.

    PubMed  CAS  Google Scholar 

  49. Ke L, Lukas RJ. Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J Neurochem 1996; 67: 1100–1112.

    PubMed  CAS  Google Scholar 

  50. Paradiso K, Sabey K, Evers AS, Zorumski CF, Covey DF, Steinbach JH. Steroid inhibition of rat neuronal nicotinic alpha4beta2 receptors expressed in HEK 293 cells. M Pharmacol 2000; 58(2): 341–351.

    CAS  Google Scholar 

  51. Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1992; 89: 9949–9953.

    PubMed  CAS  Google Scholar 

  52. Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000; 75(3): 1155–1161.

    PubMed  CAS  Google Scholar 

  53. Balfour DJ. Neural mechanisms underlying nicotine dependence. Addiction 1994; 89(11): 1419–1423.

    PubMed  CAS  Google Scholar 

  54. Benwell ME, Balfour JK. Nicotine binding to brain tissue from drug-naive and nicotine-treated rats. J Pharm Pharmacol 1985; 37(6): 405–409.

    PubMed  CAS  Google Scholar 

  55. Marks MJ, Burch JB, Collins AC. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 1983; 226(3): 817–825.

    PubMed  CAS  Google Scholar 

  56. Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 1983; 220(4593): 214–216.

    PubMed  CAS  Google Scholar 

  57. Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG. Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res 1989; 79: 157–163.

    PubMed  CAS  Google Scholar 

  58. Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 1992; 12(7): 2765–2784.

    PubMed  CAS  Google Scholar 

  59. Clarke PB, Pert A. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res 1985; 348(2): 355–358.

    PubMed  CAS  Google Scholar 

  60. Corrigall WA, Franklin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992; 107(2–3): 285–289.

    CAS  Google Scholar 

  61. Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron 1996; 16(5): 905–908.

    PubMed  CAS  Google Scholar 

  62. Balfour DJ, Benwell ME, Birrell CE, Kelly RJ, Al Aloul M. Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol Biochem Behav 1998; 59: 1021–1030.

    PubMed  CAS  Google Scholar 

  63. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev 1987; 94(4): 469–492.

    PubMed  CAS  Google Scholar 

  64. Joseph MH, Young AM, Gray JA. Are neurochemistry and reinforcement enough – can the abuse potential of drugs be explained by common actions an a dopamine reward system in the brain? Human Psychopharmacol 1996; 11: 55–63.

    Google Scholar 

  65. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 996; 93(24): 14065–14069.

    Google Scholar 

  66. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996; 379(6567): 733–736.

    PubMed  CAS  Google Scholar 

  67. Rose JE, Behm FM, Ramsey C, Ritchie JC Jr. Platelet monoamine oxidase, smoking cessation, and tobacco withdrawal symptoms. Nicotine Tob Res 2001; 3(4): 383–390.

    PubMed  CAS  Google Scholar 

  68. Henschler D. Tabak. In: Forth W, Henschler D, Rummel W, Starke K. (Hrsg) Pharmakologie und Toxikologie, 6. Aufl. Mannheim: Wissenschaftsverlag, 1992, S. 809–815.

    Google Scholar 

  69. Roth L, Daunderer M, Korman K (Hrsg) Giftpflanzen – Pflanzengifte: Vorkommen, Wirkung, Therapie. Landsberg: ecomed-Verlag, 1984, S. IV-3-N, 3–5.

    Google Scholar 

  70. Quensel M, Agardh CD, Nilsson-Ehle P. Nicotine does not affect plasma lipoprotein concentrations in healthy men. Scand J Clin Lab Invest 1989; 49(2): 149–153.

    PubMed  CAS  Google Scholar 

  71. Warburton DM. Nicotine: an addictive substance or a therapeutic agent? Prog Drug Res 1989; 33: 9–41.

    PubMed  CAS  Google Scholar 

  72. Winternitz WW, Quillen D. Acute hormonal response to cigarette smoking. J Clin Pharmacol 1977; 17(7): 389–397.

    PubMed  CAS  Google Scholar 

  73. Targovnik JH. Nicotine, corticotropin, and smoking withdrawal symptoms: literature review and implications for successful control of nicotine addiction. Clin Ther 1989; 11(6): 846–853.

    PubMed  CAS  Google Scholar 

  74. Benowitz NL. Pharmacologic aspects of cigarette smoking and nicotine addiction. N Engl J Med 1988; 319: 1318–1330.

    PubMed  CAS  Google Scholar 

  75. Eriksson P, Ankarberg E, Fredriksson A. Exposure to nicotine during a defined period in neonatal life induces permanent changes in brain nicotinic receptors and in behaviour of adult mice. Brain Res 2000; 853(1): 41–48.

    PubMed  CAS  Google Scholar 

  76. Levin ED, Wilkerson A, Jones JP, Christopher NC, Briggs SJ. Prenatal nicotine effects on memory in rats: pharmacological and behavioral challenges. Brain Res Dev Brain Res 1996; 97(2): 207–215.

    PubMed  CAS  Google Scholar 

  77. Miao H, Liu C, Bishop K, Gong ZH, Nordberg A, Zhang X. Nicotine exposure during a critical period of development leads to persistent changes in nicotinic acetylcholine receptors of adult rat brain. J Neurochem 1998; 70(2): 752–762.

    PubMed  CAS  Google Scholar 

  78. Navarro HA, Seidler FJ, Eylers JP, Baker FE, Dobbins SS, Lappi SE et al. Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain. J Pharmacol Exp Ther 1989; 251(3): 894–900.

    PubMed  CAS  Google Scholar 

  79. Nordberg A, Zhang XA, Fredriksson A, Eriksson P. Neonatal nicotine exposure induces permanent changes in brain nicotinic receptors and behaviour in adult mice. Brain Res Dev Brain Res 1991; 63(1–2): 201–207.

    PubMed  CAS  Google Scholar 

  80. Slotkin TA, Orband-Miller L, Queen KL. Development of [3H]nicotine binding sites in brain regions of rats exposed to nicotine prenatally via maternal injections or infusions. J Pharmacol Exp Ther 1987; 242(1): 232–237.

    PubMed  CAS  Google Scholar 

  81. Sugiyama H, Hagino N, Moore G, Lee JW. [3H]Nicotine binding sites in developing fetal brains in rats. Neurosci Res1985; 2(5): 387–392.

    Google Scholar 

  82. DiFranza JR, Lew RA. Effect of maternal cigarette smoking on pregnancy complications and sudden infant death syndrome. J Fam Pract 1995; 40(4): 385–394.

    PubMed  CAS  Google Scholar 

  83. Fried PA, O’Connell CM, Watkinson B. 60- and 72-month follow-up of children prenatally exposed to marijuana, cigarettes, and alcohol: cognitive and language assessment. J Dev Behav Pediatr 1992; 13(6): 383–391.

    PubMed  CAS  Google Scholar 

  84. Naeye RL. Cognitive and behavioral abnormalities in children whose mothers smoked cigarettes during pregnancy. J Dev Behav Pediatr 1992; 13(6): 425–428.

    PubMed  CAS  Google Scholar 

  85. Weitzman M, Gortmaker S, Sobol A. Maternal smoking and behavior problems of children. Pediatrics 1992; 90(3): 342–349.

    PubMed  CAS  Google Scholar 

  86. Luck W, Nau H, Hansen R, Steldinger R. Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev Pharmacol Ther 1985; 8(6): 384–395.

    PubMed  CAS  Google Scholar 

  87. Hellstrom-Lindahl E, Seiger A, Kjaeldgaard A, Nordberg A. Nicotine-induced alterations in the expression of nicotinic receptors in primary cultures from human prenatal brain. Neuroscience 2001; 105(3): 527–534.

    PubMed  CAS  Google Scholar 

  88. Jarvik ME, Madsen DC, Olmstead RE, Iwamoto-Schaap PN, Elins JL, Benowitz NL. Nicotine blood levels and subjective craving for cigarettes. Pharmacol Biochem Behav 2000; 66(3): 553–558.

    PubMed  CAS  Google Scholar 

  89. Guthrie SK, Ni L, Zubieta JK, Teter CJ, Domino EF. Changes in craving for a cigarette and arterial nicotine plasma concentrations in abstinent smokers. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28(4): 617–623.

    PubMed  CAS  Google Scholar 

  90. Jaffe JH. Drug addiction and drug abuse: nicotine and tobacco, . In: Gilman AG, Goldman LS, Rall TW and Murrad S (eds). Goodman and Gilman’s the pharmacological basis of therapeutics. New York: Macmillan, 1985, pp 554–558

    Google Scholar 

  91. Zevin S, Gourlay SG, Benowitz NL. Clinical pharmacology of nicotine. Clin Dermatol 1998; 16(5): 557–564.

    PubMed  CAS  Google Scholar 

  92. Taylor PJ, Forrest KK, Landsberg PG, Mitchell C, Pillans PI. The measurement of nicotine in human plasma by high-performance liquid chromatography-electrospray-tandem mass spectrometry. Ther Drug Monit 2004; 26(5): 563–568.

    PubMed  CAS  Google Scholar 

  93. Xu X, Iba MM, Weisel CP. Simultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography-tandem mass spectrometry. Clin Chem 2004; 50(12): 2323–2330.

    PubMed  CAS  Google Scholar 

  94. Hoffmann D, Wynder EL. Aktives und passives Rauchen. In: Marquardt H, Schäfer SG (Hrsg) Lehrbuch der Toxikologie. Mannheim: Wissenschaftsverlag, 1994, S. 589–605

    Google Scholar 

  95. Zevin S, Jacob P, Geppetti P, Benowitz NL. Clinical pharmacology of oral cotinine. Drug Alcohol Depend 2000; 60(1): 13–18.

    PubMed  CAS  Google Scholar 

  96. Acosta M, Buchhalter A, Breland A, Hamilton D, Eissenberg T. Urine cotinine as an index of smoking status in smokers during 96-hr abstinence: comparison between gas chromatography/mass spectrometry and immunoassay test strips. Nicotine Tob Res 2004; 6(4): 615–620.

    PubMed  CAS  Google Scholar 

  97. Benowitz NL, Jacob P III. Nicotine and carbon monoxide intake from high- and low-yield cigarettes. Clin Pharmacol Ther 1984; 36: 265–270.

    PubMed  CAS  Google Scholar 

  98. Benowitz NL, Pomerleau OF, Pomerleau CS, Jacob P III. Nicotine metabolite ratio as a predictor of cigarette consumption. Nicotine Tob Res 2003; 5(5): 621–624.

    PubMed  CAS  Google Scholar 

  99. Dempsey D, Jacob P III, Benowitz NL. Nicotine metabolism and elimination kinetics in newborns. Clin Pharmacol Ther 2000; 67(5): 458–465.

    PubMed  CAS  Google Scholar 

  100. Benowitz NL, Jacob P III, Fong I, Gupta S. Nicotine metabolic profile in man: comparison of cigarette smoking and transdermal nicotine. J Pharmacol Exp Ther 1994; 268: 296–303.

    PubMed  CAS  Google Scholar 

  101. Nagashima K, Inoue K. Characterization of CYP2A6 involved in 3’-hydroxylation of cotinine in human liver microsomes. J Pharmacol Exp Ther 1996; 277: 1010–1015.

    PubMed  Google Scholar 

  102. Benowitz NL. Pharmacokinetic considerations in understanding nicotine dependence. In: The biology of nicotine dependence. Ciba Foundation Symposium 152. Chichester: John Wiley & Sons 1990; 23:186–209.

    Google Scholar 

  103. Benowitz NL, Porchet H, Sheiner L, Jacob P. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotin gum. Clin Pharamcol Ther 1988; 5: 23–28.

    Google Scholar 

  104. Mander L, Hansson A, Lunell E. Pharmacokinetics of nicotine in healthy elderly people. Clin Pharmacol Ther 2001; 69(1): 57–65.

    Google Scholar 

  105. Henningfield JE, Miyasato K, Jasinski DR. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther 1985; 234: 1–12.

    PubMed  CAS  Google Scholar 

  106. Mathieu-Kia AM, Kellogg SH, Butelman ER, Kreek MJ. Nicotine addiction: insights from recent animal studies. Psychopharmacology (Berl) 2002; 162(2): 102–118.

    CAS  Google Scholar 

  107. Hilts PJ. Rating addictiveness. The Journal (Toronto) 1995; 24(6): 12.

    Google Scholar 

  108. Fagerstrom KO, Kunze M, Schoberberger R, Breslau N, Hughes JR, Hurt RD et al. Nicotine dependence versus smoking prevalence: comparisons among countries and categories of smokers. Tob Control 1996; 5(1): 52–56.

    PubMed  CAS  Google Scholar 

  109. Chen J, Millar WJ. Age of smoking initiation: implications for quitting. Health Rep 1998; 9: 39–46.

    PubMed  CAS  Google Scholar 

  110. Trauth JA, Seidler FJ, Ali SF, Slotkin TA. Adolescent nicotine exposure produces immediate and long-term changes in CNS noradrenergic and dopaminergic function. Brain Res 2001; 892(2): 269–280.

    PubMed  CAS  Google Scholar 

  111. Rose JE, Behm FM, Westman EC, Bates JE, Salley A. Pharmacologic and sensorimotor components of satiation in cigarette smoking. Pharmacol Biochem Behav 2003; 76(2): 243–250.

    PubMed  CAS  Google Scholar 

  112. Benowitz NL, Jaffe JH. Drug addiction an drug abuse: nicotine and tobacco. In: Gilman AG, Goodman AS, Rall TW, Murrad F (eds) Goodman and Gilman’s The pharmacological basis of therapeutics. New York: Macmillan, 1985, pp 554–558.

    Google Scholar 

  113. Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 1998; 155: 1009–1015.

    PubMed  CAS  Google Scholar 

  114. Van Den Eijnden R, Spijkerman R, Fekkes D. Craving for cigarettes among low and high dependent smokers: impact of norharman. Addict Biol 2003; 8(4): 463–472.

    PubMed  Google Scholar 

  115. Fekkes D, Schouten MJ, Pepplinkhuizen L, Bruinvels J, Lauwers W, Brinkman UA. Norharman, a normal body constituent. Lancet 1992; 339(8791): 506.

    PubMed  CAS  Google Scholar 

  116. Poindexter JEH, Carpenter RD. The isolation of harmane and norharmane from tobacco and cigarette smoke. Phytochemistry 1962; 1: 215–221.

    CAS  Google Scholar 

  117. Baum SS, Hill R, Rommelspacher H. Norharman-induced changes of extracellular concentrations of dopamine in the nucleus accumbens of rats. Life Sci 1995; 56(20): 1715–1720.

    PubMed  CAS  Google Scholar 

  118. Dijkstra A, Tromp D. Is the FTND a measure of physical as well as psychological tobacco dependence? J Subst Abuse Treat 2002; 23(4): 367–374.

    PubMed  Google Scholar 

  119. Steinberg ML, Williams JM, Steinberg HR, Krejci JA, Ziedonis DM. Applicability of the Fagerstrom Test for Nicotine Dependence in smokers with schizophrenia. Addict Behav 2005; 30(1): 49–59.

    PubMed  Google Scholar 

  120. Heishman SJ, Singleton EG, Moolchan ET. Tobacco Craving Questionnaire: reliability and validity of a new multifactorial instrument. Nicotine Tob Res 2003; 5(5): 645–654.

    PubMed  Google Scholar 

  121. DSM-IV. American psychiatric association: diagnostic and statistical manual of mental disorder, 4th. edn. Washington: American Psychatric Association, 1994.

    Google Scholar 

  122. Goldberg SR, Spealman RD, Goldberg DM. Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 1981; 214(4520): 573–575.

    PubMed  CAS  Google Scholar 

  123. Spitz MR, Shi H, Yang F, Hudmon KS, Jiang H, Chamberlain RM et al. Case-control study of the D2 dopamine receptor gene and smoking status in lung cancer patients. J Natl Cancer Inst 1998; 90(5): 358–363.

    PubMed  CAS  Google Scholar 

  124. Clarke PB. Dopaminergic mechanisms in the locomotor stimulant effects of nicotine. Biochem Pharmacol 1990; 40(7): 1427–1432.

    PubMed  CAS  Google Scholar 

  125. Clarke PB. Tobacco smoking, genes, and dopamine. Lancet 1998; 352(9122): 84–85.

    PubMed  CAS  Google Scholar 

  126. Benwell ME, Balfour DJ, Lucchi HM. Influence of tetrodotoxin and calcium on changes in extracellular dopamine levels evoked by systemic nicotine. Psychopharmacology (Berl) 1993; 112(4): 467–474.

    CAS  Google Scholar 

  127. Nisell M, Nomikos GG, Svensson TH. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 1994; 16(1): 36–44.

    PubMed  CAS  Google Scholar 

  128. Shoaib M, Benwell ME, Akbar MT, Stolerman IP, Balfour DJ. Behavioral and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br J Pharmacol 1994; 111(4): 1073–1080.

    PubMed  CAS  Google Scholar 

  129. Benwell MEM, Balfour DJK, Anderson JM. Smoking associated changes in serotonergic systems of discrete regions of human brain. Psychopharmacology 1990; 102: 68–72.

    PubMed  CAS  Google Scholar 

  130. Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 2004; 54(2): 65–71.

    PubMed  CAS  Google Scholar 

  131. Benwell MEM, Balfour DJK. Effects of nicotine administration and its withdrawal an plasma corticosterone and brain 5-hydroxinidoles. Psychopharmacology 1979; 4: 7–11.

    Google Scholar 

  132. Graeff FG, Guimaraes FS, Andrade TG de, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 1996; 54(1): 129–141.

    PubMed  CAS  Google Scholar 

  133. Brioni JD, O’Neill AB, Kim DJ, Buckley MJ, Decker MW, Arneric SP. Anxiolytic-like effects of the novel cholinergic channel activator ABT-418. J Pharmacol Exp Ther 1994; 271(1): 353–361.

    PubMed  CAS  Google Scholar 

  134. Costall B, Kelly ME, Naylor RJ, Onaivi ES. The actions of nicotine and cocaine in a mouse model of anxiety. Pharmacol Biochem Behav 1989; 33(1): 197–203.

    PubMed  CAS  Google Scholar 

  135. Morrison CF. The effects of nicotine on punished behaviour. Psychopharmacologia 1969; 14(3): 221–232.

    PubMed  CAS  Google Scholar 

  136. Ribeiro EB, Bettiker RL, Bogdanov M, Wurtman RJ. Effects of systemic nicotine on serotonin release in rat brain. Brain Res 1993; 621(2): 311–318.

    PubMed  CAS  Google Scholar 

  137. Deakin JFW, Graeff FG. 5-HT and mechanisms of defense. J Psychopharmacol 1991; 5: 305–315.

    Google Scholar 

  138. Breslau N, Kilbey MM, Andreski P. Nicotine dependence and major depression. New evidence from a prospective investigation. Arch Gen Psychiatry 1993; 50(1): 31–35.

    PubMed  CAS  Google Scholar 

  139. Sellers EM, Ramamoorthy Y, Zeman MV, Djordjevic MV, Tyndale RF. The effect of methoxsalen on nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in vivo. Nicotine Tob Res 2003; 5(6): 891–899.

    PubMed  CAS  Google Scholar 

  140. Pomerleau OF, Pomerleau CS. Neuroregulators and the reinforcement of smoking: towards a biobehavioral explanation. Neurosci Biobehav Rev 1984; 8: 503–513.

    PubMed  CAS  Google Scholar 

  141. Aceto MD, Scates SM, Ji Z, Bowman ER. Nicotine’s opioid and anti-opioid interactions: proposed role in smoking behavior. Eur J Pharmacol 1993; 248: 333–335.

    PubMed  CAS  Google Scholar 

  142. Chait LD, Griffiths RR. Effects of methadone on human cigarette smoking and subjective ratings. J Pharmacol Exp Ther 1984; 229: 636–640.

    PubMed  CAS  Google Scholar 

  143. Mello NK, Mendelson JH, Sellers ML, Kuehnle JC. Effects of heroin self-administration on cigarette smoking. Psychopharmacology (Berl) 1980; 67: 45–52.

    CAS  Google Scholar 

  144. Ismail Z, el Guebaly N. Nicotine and endogenous opioids: toward specific pharmacotherapy. Can J Psychiatry 1998; 43: 37–42.

    PubMed  CAS  Google Scholar 

  145. Albuquerque EX, Pereira EF, Mike A, Eisenberg HM, Maelicke A, Alkondon M. Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav Brain Res 2000; 113(1–2): 131–141.

    PubMed  CAS  Google Scholar 

  146. Kushner SA, Dewey SL, Kornetsky C. Gamma-vinyl GABA attenuates cocaine-induced lowering of brain stimulation reward thresholds. Psychopharmacology (Berl) 1997; 133(4): 383–388.

    CAS  Google Scholar 

  147. Smolders I, Khan GM, Lindekens H, Prikken S, Marvin CA, Manil J et al. Effectiveness of vigabatrin against focally evoked pilocarpine-induced seizures and concomitant changes in extracellular hippocampal and cerebellar glutamate, gamma-aminobutyric acid and dopamine levels, a microdialysis-electrocorticography study in freely moving rats. J Pharmacol Exp Ther 1997; 283(3): 1239–1248.

    PubMed  CAS  Google Scholar 

  148. Bailey SL, Ennett ST, Ringwalt CL. Potential mediators, moderators, or independent effects in the relationship between parents’ former and current cigarette use and their children’s cigarette use. Addict Behav 1993; 18(6): 601–621.

    PubMed  CAS  Google Scholar 

  149. Koopmans JR, van Doornen LJ, Boomsma DI. Association between alcohol use and smoking in adolescent and young adult twins: a bivariate genetic analysis. Alcohol Clin Exp Res 1997; 21(3): 537–546.

    PubMed  CAS  Google Scholar 

  150. Hannah MC, Hopper JL, Mathews JD. Twin concordance for a binary trait. II. Nested analysis of ever-smoking and ex-smoking traits and unnested analysis of a “committed-smoking” trait. Am J Hum Genet 1985; 37(1): 153–165.

    PubMed  CAS  Google Scholar 

  151. Heath AC, Madden PA, Slutske WS, Martin NG. Personality and the inheritance of smoking behavior: a genetic perspective. Behav Genet 1995; 25(2): 103–117.

    PubMed  CAS  Google Scholar 

  152. Li MD, Ma JZ, Cheng R, Dupont RT, Williams NJ, Crews KM et al. A genome-wide scan to identify loci for smoking rate in the Framingham Heart Study population. BMC Genet 2003; 4 (Suppl 1): S103.

    PubMed  Google Scholar 

  153. Reuter M, Hennig J. Pleiotropic effect of the TPH A779C polymorphism on nicotine dependence and personality. Am J Med Genet B Neuropsychiatr Genet 2005; 134(1): 20–24.

    PubMed  CAS  Google Scholar 

  154. Sullivan PF, Jiang Y, Neale MC, Kendler KS, Straub RE. Association of the tryptophan hydroxylase gene with smoking initiation but not progression to nicotine dependence. Am J Med Genet 2001; 105(5): 479–484.

    PubMed  CAS  Google Scholar 

  155. Anney RJ, Olsson CA, Lotfi-Miri M, Patton GC, Williamson R. Nicotine dependence in a prospective population-based study of adolescents: the protective role of a functional tyrosine hydroxylase polymorphism. Pharmacogenetics 2004; 14(2): 73–81.

    PubMed  CAS  Google Scholar 

  156. Messina ES, Tyndale RF, Sellers EM. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther 1997; 282(3): 1608–1614.

    PubMed  CAS  Google Scholar 

  157. Tyndale RF, Sellers EM. Variable CYP2A6-mediated nicotine metabolism alters smoking behavior and risk. Drug Metab Dispos 2001; 29(4 Pt 2): 548–552.

    PubMed  CAS  Google Scholar 

  158. Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature 1998; 393(6687): 750.

    PubMed  CAS  Google Scholar 

  159. Oscarson M, Gullsten H, Rautio A, Bernal ML, Sinues B, Dahl ML et al. Genotyping of human cytochrome P450 2A6 (CYP2A6), a nicotine C-oxidase. FEBS Lett 1998; 438(3): 201–205.

    PubMed  CAS  Google Scholar 

  160. Fukami T, Nakajima M, Yoshida R, Tsuchiya Y, Fujiki Y, Katoh M et al. A novel polymorphism of human CYP2A6 gene CYP2A6*17 has an amino acid substitution (V365 M) that decreases enzymatic activity in vitro and in vivo. Clin Pharmacol Ther 2004; 76(6): 519–527.

    PubMed  CAS  Google Scholar 

  161. Carter B, Long T, Cinciripini P. A meta-analytic review of the CYP2A6 genotype and smoking behavior. Nicotine Tob Res 2004; 6(2): 221–227.

    PubMed  CAS  Google Scholar 

  162. Carr LA, Basham JK, York BK, Rowell PP. Inhibition of uptake of 1-methyl-4-phenylpyridinium ion and dopamine in striatal synaptosomes by tobacco smoke components. Eur J Pharmacol 1992; 215: 285–287.

    PubMed  CAS  Google Scholar 

  163. Henningfield JE, Schuh LM, Jarvik ME. Pathophysiology of tobacco dependence. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. New York: Raven Press, 1995, pp 1715–1730.

    Google Scholar 

  164. O’Neill MF, Dourish CT, Iversen SD. Evidence for an involvement of D1 and D2 dopamine receptors in mediating nicotine-induced hyperactivity in rats. Psychopharmacology (Berl) 1991; 104: 343–350.

    CAS  Google Scholar 

  165. Noble EP. Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Eur Psychiatry 2000; 15(2): 79–89.

    PubMed  CAS  Google Scholar 

  166. Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 1991; 48(7): 648–654.

    PubMed  CAS  Google Scholar 

  167. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990; 263(15): 2055–2060.

    PubMed  CAS  Google Scholar 

  168. Comings DE, Muhleman D, Gysin R. Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol Psychiatry 1996; 40(5): 368–372.

    PubMed  CAS  Google Scholar 

  169. Comings DE, Ferry L, Bradshaw-Robinson S, Burchette R, Chiu C, Muhleman D. The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996; 6: 73–79.

    PubMed  CAS  Google Scholar 

  170. Noble EP, Noble RE, Ritchie T, Syndulko K, Bohlman MC, Noble LA et al. D2 dopamine receptor gene and obesity. Int J Eat Disord 1994; 15: 205–217.

    PubMed  CAS  Google Scholar 

  171. Goldman D, Brown GL, Albaugh B, Goodson S, Trunzo M, Akhtar L, Wynne DK et al. D2 receptor genotype and linkage disequilibrium and function in Finnish, American Indian, and U.S. Caucasian patients. In: Gershon ES, Cloninger CR (eds) Genetic approaches to mental disorders. Washington DC: American Psychiatric Press, 1994, pp 327–344.

    Google Scholar 

  172. Cinciripini P, Wetter D, Tomlinson G, Tsoh J, De Moor C, Cinciripini L et al. The effects of the DRD2 polymorphism on smoking cessation and negative affect: evidence for a pharmacogenetic effect on mood. Nicotine Tob Res 2004; 6(2): 229–239.

    PubMed  CAS  Google Scholar 

  173. Noble EP, Blum K, Khalsa ME, Ritchie T, Montgomery A, Wood RC et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend 1993; 33(3): 271–285.

    PubMed  CAS  Google Scholar 

  174. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Ozkaragoz Tet al. Genetic predisposition in alcoholism: association of the D2 dopamine receptor TaqI B1 RFLP with severe alcoholics. Alcohol 1993; 10(1): 59–67.

    PubMed  CAS  Google Scholar 

  175. Noble EP. The D2 dopamine receptor gene: a review of association studies in alcoholism. Behav Genet 1993; 23(2): 119–129.

    PubMed  CAS  Google Scholar 

  176. Bannon MJ, Granneman JG, Kapatos G. The dopamine transporter: potential involvement in neuropsychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. New York: Raven Press, 1995: 179–188.

    Google Scholar 

  177. Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990; 4: 2737–2744.

    PubMed  CAS  Google Scholar 

  178. Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–998.

    PubMed  CAS  Google Scholar 

  179. Comings DE, Wu S, Chiu C, Ring RH, Gade R, Ahn C et al. Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: the additive and subtractive effect of the three dopaminergic genes – DRD2, D beta H, and DAT1. Am J Med Genet 1996; 67: 264–288.

    PubMed  CAS  Google Scholar 

  180. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–1106.

    PubMed  CAS  Google Scholar 

  181. Gelernter J, O’Malley S, Risch N, Kranzler HR, Krystal J, Merikangas K et al. No association between an allele at the D2 dopamine receptor gene (DRD2) and alcoholism. JAMA 1991; 266: 1801–1807.

    PubMed  CAS  Google Scholar 

  182. Lerman C, Caporaso NE, Audrain J, Main D, Bowman ED, Lockshin B et al. Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 1999; 18(1): 14–20.

    PubMed  CAS  Google Scholar 

  183. George SR, Cheng R, Nguyen T, Israel Y, O’Dowd BF. Polymorphisms of the D4 dopamine receptor alleles in chronic alcoholism. Biochem Biophys Res Commun 1993; 196(1): 107–114.

    PubMed  CAS  Google Scholar 

  184. Czermak C, Lehofer M, Wagner EM, Prietl B, Gorkiewicz G, Lemonis L et al. Reduced dopamine D3 receptor expression in blood lymphocytes of smokers is negatively correlated with daily number of smoked cigarettes: a peripheral correlate of dopaminergic alterations in smokers. Nicotine Tob Res 2004; 6(1): 49–54.

    PubMed  CAS  Google Scholar 

  185. True WR, Xian H, Scherrer JF, Madden PA, Bucholz KK, Heath AC et al. Common genetic vulnerability for nicotine and alcohol dependence in men. Arch Gen Psychiatry 1999; 56(7): 655–661.

    PubMed  CAS  Google Scholar 

  186. Yates WR, Cadoret RJ, Troughton EP, Stewart M, Giunta TS. Effect of fetal alcohol exposure on adult symptoms of nicotine, alcohol, and drug dependence. Alcohol Clin Exp Res 1998; 22(4): 914–920.

    PubMed  CAS  Google Scholar 

  187. West R, Hajek P. What happens to anxiety levels on giving up smoking? Am J Psychiatry 1997; 154(11): 1589–1592.

    PubMed  CAS  Google Scholar 

  188. Sharples CGV, Wonnacott S. Neuronal nicotinic receptors. Tocris Reviews No. 19. Avonmouth, Bristol, UK: Tocris Cookson Ltd, 2001

    Google Scholar 

  189. Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, Volsen SG et al. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat 2003; 25(2): 97–113.

    PubMed  CAS  Google Scholar 

  190. Benowitz NL, Porchet H, Jacob P. Pharmacokinetics, metabolism and pharmacodynamics of nicotine. In: Wonnacott S, Russel MAH, Stolerman IP (eds) Nicotine psychopharmacology: molecular, cellular and behavioral aspects. New York: Oxford University Press 1990, pp 112–157.

    Google Scholar 

  191. Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend 1993; 33(1): 23–29.

    PubMed  CAS  Google Scholar 

  192. Schneider NG, Lunell E, Olmstead RE, Fagerstrom KO. Clinical pharmacokinetics of nasal nicotine delivery. A review and comparison to other nicotine systems. Clin Pharmacokinet 1996; 31(1): 65–80.

    PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Pharmakologie und Pharmakokinetik von Nikotin. In: Haustein, KO. (eds) Tabakabhängigkeit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73309-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73309-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73308-9

  • Online ISBN: 978-3-540-73309-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics