Advertisement

Direct Anonymous Attestation (DAA): Ensuring Privacy with Corrupt Administrators

  • Ben Smyth
  • Mark Ryan
  • Liqun Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4572)

Abstract

The Direct Anonymous Attestation (DAA) scheme provides a means for remotely authenticating a trusted platform whilst preserving the user’s privacy. The protocol has been adopted by the Trusted Computing Group (TCG) in the latest version of its Trusted Platform Module (TPM) specification. In this paper we show DAA places an unnecessarily large burden on the TPM host. We demonstrate how corrupt administrators can exploit this weakness to violate privacy. The paper provides a fix for the vulnerability. Further privacy issues concerning linkability are identified and a framework for their resolution is developed. In addition an optimisation to reduce the number of messages exchanged is proposed.

Keywords

cryptographic protocol trusted computing privacy anonymity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudeonymity a proposal for terminology. In: International workshop on Designing privacy enhancing technologies, pp. 1–9. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Pfitzmann, A., Köhntopp, M.: Anonymity, unlinkability, unobservability, pseudonymity, and identity management a consolidated proposal for terminology. version 0.26. Technical report, Department of Computer Science, Technische Universität Dresden (2005)Google Scholar
  3. 3.
    Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Transactions on Information and System Security (TISSEC) 1(1), 66–92 (1998)CrossRefGoogle Scholar
  4. 4.
    Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion routing. Selected Areas in Communications 16(4), 482–494 (1998)CrossRefGoogle Scholar
  5. 5.
    TCG: Trusted Computing Platform Alliance (TCPA) Main Specification Version 1.1b. Technical report, Trusted Computing Group, Previously published by the Trusted Computing Platform Alliance (2002)Google Scholar
  6. 6.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004. 11th ACM conference on Computer and communications security, New York, United States of America, pp. 132–145. ACM Press, New York (2004)CrossRefGoogle Scholar
  7. 7.
    TCG: TCG TPM Specification Version 1.2 Revision 85. Technical report, Trusted Computing Group (2005)Google Scholar
  8. 8.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  10. 10.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. 5 edn. CRC Press (2001)Google Scholar
  11. 11.
    Meadows, C.: Formal methods for cryptographic protocol analysis: emerging issues and trends. Selected Areas in Communications 21(1), 44–54 (2003)CrossRefGoogle Scholar
  12. 12.
    Koblitz, N., Menezes, A.J.: Another look at “provable security”. Cryptology ePrint Archive, Report 2004/152 (2004)Google Scholar
  13. 13.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix anonymous credential system. In: CCS 2002. Proceedings of the 9th ACM conference on Computer and communications security, pp. 21–30. ACM Press, New York (2002)CrossRefGoogle Scholar
  15. 15.
    Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Brickell, E., Camenisch, J., Chen, L.: The DAA Scheme in Context. In: Mitchell, C.(eds.) Trusted Computing. The Institute of Electrical Engineers (IEE) (2005)Google Scholar
  17. 17.
    Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. Cryptology ePrint Archive, Report 1998/007, Full version (1998)Google Scholar
  19. 19.
    Tanaka, T.: Possible economic consequences of digital cash. In: INET 1996: Proceedings of the 6th Annual Internet Society Conference, ISOC (1996)Google Scholar
  20. 20.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. Cryptology ePrint Archive, Report 2004/205, Full version of ACM CCS 2004 paper (February 2004)Google Scholar
  21. 21.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. Technical report, HP Labs (HPL-2004-93) (June 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ben Smyth
    • 1
  • Mark Ryan
    • 1
  • Liqun Chen
    • 2
  1. 1.School of Computer Science, University of BirminghamUK
  2. 2.HP Laboratories, BristolUK

Personalised recommendations