Authenticating DSR Using a Novel Multisignature Scheme Based on Cubic LFSR Sequences

  • Saikat Chakrabarti
  • Santosh Chandrasekhar
  • Mukesh Singhal
  • Kenneth L. Calvert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4572)


The problem of secure routing in mobile ad hoc networks is long-standing and has been extensively studied by researchers. Recently, techniques of aggregating signatures have been applied to authenticate on demand routing protocols in mobile ad hoc networks. In this paper, we propose an efficient, single round multisignature scheme, CLFSR-M, constructed using cubic (third-order) linear feedback shift register (LFSR) sequences. The scheme, CLFSR-M is derived from a 2-party signature scheme CLFSR-S, formed using a well-known variant of the generalized ElGamal signature scheme. The multisignature has been engineered to produce an efficient technique to authenticate route discovery in the dynamic source routing (DSR) protocol. Our technique supports authentication of cached routes. Delegating special functions to nodes or assuming the existence of a trusted third party to distribute certified public keys is not practical in mobile ad hoc networks. We consider a fully distributed mechanism of public key distribution and present two variations of trust policies, based on PGP, for effective management of individual and aggregate public keys. Finally, we perform a theoretical analysis including correctness and security of CLFSR-M and also present a performance (computation and communication costs, storage overhead) comparison of the proposed scheme with existing ones.


secure routing DSR multisignatures generalized El Gamal signatures LFSR-based PKCs PGP small-world graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, D.B., Maltz, D.A., Hu, Y.C.: The Dynamic Souce Routing Protocol for Mobile Ad Hoc Networks (DSR). Internet draft draft-ietf-manet-dsr-10, IETF MANET Working Group (July 2004)Google Scholar
  2. 2.
    Hu, Y.C., Perrig, A.: A survey of secure wireless ad hoc routing. IEEE Security & Privacy 2(3), 28–39 (2004)CrossRefGoogle Scholar
  3. 3.
    Kim, J., Tsudik, G.: SRDP: Securing route discovery in DSR. In: Proceedings of MobiQuitous, pp. 247–260. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Hu, Y.C., Johnson, D.B.: Caching strategies in on-demand routing protocols for wireless ad hoc networks. In: Proceedings of MOBICOM, pp. 231–242 (2000)Google Scholar
  5. 5.
    Chakrabarti, S., Chandrasekhar, S., Singhal, M., Calvert, K.L.: Authenticating feedback in multicast applications using a novel multisignature scheme based on cubic LFSR sequences. To appear in Proceedings of SSNDS (2007)Google Scholar
  6. 6.
    Horster, P., Petersen, H., Michels, M.: Meta-ElGamal signature schemes. In: ACM Conference on Computer and Communications Security, pp. 96–107 (1994)Google Scholar
  7. 7.
    Giuliani, K.J., Gong, G.: New LFSR-based cryptosystems and the trace discrete log problem (trace-DLP). In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 298–312. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Zimmermann, P.: The official PGP user’s guide (1995)Google Scholar
  9. 9.
    Milgram, S.: The small world problem. Psychology Today 61(2), 60–67 (1967)Google Scholar
  10. 10.
    Čapkun, S., Buttyán, L., Hubaux, J.P.: Small worlds in security systems: an analysis of the PGP certificate graph. In: Proceedings of NSPW (2002)Google Scholar
  11. 11.
    Čapkun, S., Buttyán, L., Hubaux, J.P.: Self-organized public-key management for mobile ad hoc networks. IEEE Transactions on Mobile Computing 2(1), 52–64 (2003)CrossRefGoogle Scholar
  12. 12.
    Papadimitratos, P., Haas, Z.J.: Secure routing for mobile ad hoc networks. In: Proceedings of CNDS (2002)Google Scholar
  13. 13.
    Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: A secure on-demand routing protocol for ad hoc networks. Wireless Networks 11(1-2), 21–38 (2005)CrossRefGoogle Scholar
  14. 14.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Proceedings of CCS, pp. 245–254 (2001)Google Scholar
  15. 15.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Bhaskar, R., Herranz, J., Laguillaumie, F.: Efficient authentication for reactive routing protocols. In: Proceedings of AINA, pp. 57–61. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  18. 18.
    Itakura, K., Nakamura, H., Nakazawa, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Research and Development (1983)Google Scholar
  19. 19.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: Proceedings of STOC, pp. 163–170 (2000)Google Scholar
  22. 22.
    Niederreiter, H.: A public-key cryptosystem based on shift register sequences. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, pp. 35–39. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Gong, G., Harn, L.: Public-key cryptosystems based on cubic finite field extensions. IEEE Transactions on Information Theory 45(7), 2601–2605 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Gong, G., Harn, L., Wu, H.: The GH public-key cryptosystem. In: Vaudenay, S., Youssef, A.M. (eds.) Selected Areas in Cryptography. LNCS, vol. 2259, pp. 284–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Lenstra, A.K., Verheul, E.R.: The XTR Public Key System. In: Bellare, M. (ed.) Advances in Cryptology - CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Golomb, S.W.: Shift Register Sequences. Holden-Day (1967)Google Scholar
  27. 27.
    Peeters, E., Neve, M., Ciet, M.: XTR implementation on reconfigurable hardware. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 386–399. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Chakrabarti, S., Giruka, V.C., Singhal, M.: Security in Distributed, Grid, and Pervasive Computing, Edited by Prof. Yang Xiao. Auerbach Publications, CRC Press, Boca Raton (2006)Google Scholar
  29. 29.
    Čapkun, S., Hubaux, J.P.: BISS: building secure routing out of an incomplete set of security associations. In: Workshop on Wireless Security, pp. 21–29 (2003)Google Scholar
  30. 30.
    Zhou, L., Haas, Z.J.: Securing ad hoc networks. IEEE Network 13(6), 24–30 (1999)CrossRefGoogle Scholar
  31. 31.
    Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous security support for mobile ad hoc networks. In: Proceedings of ICNP, pp. 251–260. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  32. 32.
    Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)Google Scholar
  33. 33.
    Koblitz, N., Menezes, A.: Another Look at Provable Security. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 148–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Saikat Chakrabarti
    • 1
  • Santosh Chandrasekhar
    • 1
  • Mukesh Singhal
    • 1
  • Kenneth L. Calvert
    • 1
  1. 1.Laboratory for Advanced Networking, Department of Computer Science, University of Kentucky, Lexington KY 40506 

Personalised recommendations