Skip to main content

Active Mean Fields: Solving the Mean Field Approximation in the Level Set Framework

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

We describe a new approach for estimating the posterior probability of tissue labels. Conventional likelihood models are combined with a curve length prior on boundaries, and an approximate posterior distribution on labels is sought via the Mean Field  approach. Optimizing the resulting estimator by gradient descent leads to a level set style algorithm where the level set functions are the logarithm-of-odds encoding of the posterior label probabilities in an unconstrained linear vector space. Applications with more than two labels are easily accommodated. The label assignment is accomplished by the Maximum A Posteriori rule, so there are no problems of “overlap” or “vacuum”. We test the method on synthetic images with additive noise. In addition, we segment a magnetic resonance scan into the major brain compartments and subcortical structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D., Busa, E., Seidman, L., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004)

    Article  Google Scholar 

  2. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Transactions on Medical Imaging 16(2), 199–209 (1997)

    Article  Google Scholar 

  3. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3d images. Computer Vision and Image Understanding 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  4. Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1323. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  5. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging 22(2), 137–154 (2003)

    Article  Google Scholar 

  6. Rousson, M., Paragios, N., Deriche, R.: Active shape models from a level set perspective. Technical Report 4984, Institut National de Recherche en Informatique et en Automatique (2003)

    Google Scholar 

  7. Yang, J., Staib, L.H., Duncan, J.S.: Neighbor-constrained segmentation with level set based 3D deformable models. IEEE Transactions on Medical Imaging 23(8), 940–948 (2004)

    Article  Google Scholar 

  8. Xu, M., Thompson, P., Toga, A.: An adaptive level set segmentation on a triangulated mesh. IEEE Transactions on Medical Imaging 23(2), 191–201 (2004)

    Article  Google Scholar 

  9. Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(1), 1116–1128 (2006)

    Article  Google Scholar 

  10. Kapur, T.: Model based three dimensional Medical Imaging Segmentation. PhD thesis, Massachusetts Institute of Technology (1999)

    Google Scholar 

  11. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  12. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Society. Series B. 48(3), 259–302 (1986)

    MATH  Google Scholar 

  13. Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33 (2002)

    Google Scholar 

  14. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  15. Marroquin, J., Santana, E., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1380–1387 (2003)

    Article  Google Scholar 

  16. Pohl, K., Fisher, J., Shenton, M., McCarley, R.W., Grimson, W., Kikinis, R., Wells, W.: Logarithm odds maps for shape representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Pohl, K.M., Fisher, J., Grimson, W., Kikinis, R., Wells, W.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)

    Article  Google Scholar 

  18. Kendall, M.G., Buckland, W.R.: A Dictionary of Statistical Terms. Longman Group (1976)

    Google Scholar 

  19. Evans, M., Hastings, N., Peacock, B.: 4: Bernoulli Distribution. In: Statistical Distributions, 3rd edn. pp. 31–33. Wiley, Chichester (2000)

    Google Scholar 

  20. Taron, M., Paragios, N., Jolly, M.P.: Modelling shapes with uncertainties: Higher order polynomials, variable bandwidth kernels and non-parametric density estimation. In: IEEE International Conference on Computer Vision, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  21. Grayson, M.: The heat equation shrinks embedded plane curves to round points. Journal of Differential Geometry 26(2), 285–314 (1987)

    MATH  Google Scholar 

  22. Krissian, K., Westin, C.: Fast sub-voxel re-initialization of the distance map for level set methods. Pattern Recognition Letters 26(10), 1532–1542 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pohl, K.M., Kikinis, R., Wells, W.M. (2007). Active Mean Fields: Solving the Mean Field Approximation in the Level Set Framework. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics