Skip to main content

LV Segmentation Through the Analysis of Radio Frequency Ultrasonic Images

  • Conference paper
Book cover Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

LV segmentation is often an important part of many automated cardiac diagnosis strategies. However, the segmentation of echocardiograms is a difficult task because of poor image quality. In echocardiography, we note that radio-frequency (RF) signal is a rich source of information about the moving LV as well. In this paper, first, we will investigate currently used, important RF derived parameters: integrated backscatter coefficient(IBS), mean central frequency (MCF) and the maximum correlation coefficients (MCC) from speckle tracking. Second, we will develop a new segmentation algorithm for the segmentation of the LV boundary, which can avoid local minima and leaking through uncompleted boundary. Segmentations are carried out on the RF signal acquired from a Sonos7500 ultrasound system. The results are validated by comparing to manual segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feleppa, E.J., Kalisz, A., Sokil-Melgar, J.B., Lizzi, F.L., Liu, T., Rosado, A.L., Shao, M.C., R, W., Wang, F.Y., Cookson, M.S., Reuter, V.E., Heston, W.D.W: Typing of prostate tissue by ultrasonic spectrum analysis. IEEE Trans. on Ultrasonics,Ferroelectrics, and Frequency Control 43, 609 (1996)

    Article  Google Scholar 

  2. Schmitz, G., Ermert, H., Senge, T.: Tissue-characterization of the prostate using radio frequency ultrasonic signals. IEEE Trans. on Ultrasonics,Ferroelectrics, and Frequency Control 46, 126–138 (1999)

    Article  Google Scholar 

  3. Georgiou, G., Cohen, F.S., Piccoli, C.W., Forsberg, F., Goldberg, B.B.: Tissue characterization using the continuous wavelet transform part ii: Application on breast rf data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 48(2), 364–373 (2001)

    Article  Google Scholar 

  4. Gefen, S., Tretiak, O., Piccoli, C., Donohue, K., Petropulu, A., Shankar, P., Dumane, V., Huang, L., Kutay, M., Genis, V., Forsberg, F., Reid, J.: Roc analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis. IEEE Trans. Medical Imaging 22(2), 170–177 (2003)

    Article  Google Scholar 

  5. Boukerroui, D., Basset, O., Baskurt, A., Gimenez, G.: A multiparametric and multiresolution segmentation algorithm of 3d ultrasonic data. IEEE Trans. on Ultrasonics,Ferroelectrics, and Frequency Control 48, 64–77 (2001)

    Article  Google Scholar 

  6. Dydenko, I., Friboulet, D., Gorce, J.M., D’hooge, J., Bijnens, B., Magnin, I.E.: Towards ultrasound cardiac image segmentation based on the radiofrequency signal. Medical Image Analysis 7, 353–367 (2003)

    Article  Google Scholar 

  7. Davignon, F., Deprez, J.F., Basset, O.: A parametric imaging approach for the segmentation of ultrasound data. Ultrasonics 43, 789–801 (2005)

    Article  Google Scholar 

  8. Chen, Y., Thiruvenkadam, S., Tagare, H., Huang, F., Wilson, D., Geiser, E.: On the incorporation of shape priors into geometric active contours. In: IEEE Workshop on Variational and Level Set. Methods in Computer Vision, vol. 1, pp. 145–152 (2001)

    Google Scholar 

  9. Bosch, J., Mitchell, S., Lelieveldt, B., Nijland, F., Kamp, O., Sonka, M., Reiber, J.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. on Medical Imaging 21, 1374–1383 (2002)

    Article  Google Scholar 

  10. Tao, Z., Jaffe, C.C., Tagare, H.D.: Tunneling descent: A new algorithm for active contour segmentation of ultrasound images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 246–257. Springer, Heidelberg (2003)

    Google Scholar 

  11. Xiao, G., Brady, M., Noble, J., Zhang, Y.: Segmentation of ultrasound b-mode images with intensity inhomogeneity correction. IEEE Trans. Medical Imaging 21(1), 48–57 (2002)

    Article  Google Scholar 

  12. Zong, X., Laine, A., Geiser, E.: Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing. IEEE Trans. Medical Imaging 17(4), 532–540 (1998)

    Article  Google Scholar 

  13. Rijsterborgh, H., Mastik, F., Lancee, C.T., Verdouw, P., Roelandt, J., Bom, N.: Ultrasound myocardial integrated backscatter signal processing:frequency domain versus time domain. Ultrasound Med. Biol. 19, 211–219 (1993)

    Article  Google Scholar 

  14. Gorce, J., Friboulet, D., Dydenko, I., D’hooge, J., Bijnens, B., Magnin, I.: Processing radio frequency ultrasound images: A robust method for local spectral features estimation by a spatially constrained parametric approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 49(12), 1704–1719 (2002)

    Article  Google Scholar 

  15. Hossen, A.: Power spectral density estimation via wavelet decomposition. Electroics Letters 40(17), 1055–1056 (2004)

    Article  Google Scholar 

  16. Burckhardt, C.: speckle in ultrasound b-mode scans. IEEE transactions on sonics and ultrasonics 30(3), 156–163 (1983)

    Google Scholar 

  17. Lubinski, M., Emelianov, S., O’Donnell, M.: Speckle tracking methods for ultrasonic elasticity imaging using short time correlation. IEEE trans Ultrason Ferroelect Freq. Contr 46, 82–96 (1999)

    Article  Google Scholar 

  18. Yan, P., Duncan, J.S., Sinusas, A.: Lv segmentation from 3d echocardiography using fuzzy features and a multilevel ffd model (2007)

    Google Scholar 

  19. Rangarajan, A., Chui, H., Mjolsness, E., Pappu, S., Davachi, L., Goldman-Rakic, P., Duncan, J.S.: A robust point matching algorithm for autoradiograph alignment. Medical Image Analysis 4(1), 379–398 (1997)

    Article  Google Scholar 

  20. Lee, S., Wolberg, G., Chwa, K., Shin, S.: Image metamorphosis with scattered feature constraints. IEEE Trans. on Visualization and Computer Graphics 2, 337–354 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Yan, P., Jia, C.X., Sinusas, A., Thiele, K., O’Donnell, M., Duncan, J.S. (2007). LV Segmentation Through the Analysis of Radio Frequency Ultrasonic Images. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics