Skip to main content

Lung Nodule Detection Via Bayesian Voxel Labeling

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

This paper describes a system for detecting pulmonary nodules in CT images. It aims to label individual image voxels in accordance to one of a number of anatomical (pulmonary vessels or junctions), pathological (nodules), or spurious (noise) events. The approach is orthodoxly Bayesian, with particular care taken in the objective establishment of prior probabilities and the incorporation of relevant medical knowledge. We provide, under explicit modeling assumptions, closed-form expressions for all the probability distributions involved. The technique is applied to real data, and we present a discussion of its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferlay, J., Bray, F., Pisani, P., Parkin, D.M.: GLOBOCAN 2002: Cancer incidence, mortality and prevalence worldwide. Technical report, IARC CancerBase No. 5. version 2.0, IARCPress (2004)

    Google Scholar 

  2. Fry, W.A., Menck, H.R., Winchester, D.P.: The national database report on lung cancer. Cancer 77, 1947–1955 (1996)

    Article  Google Scholar 

  3. Flehinger, B.J., Kimmel, M., Melamed, M.R.: The effect of surgical treatment on survival from early lung cancer: Implications for screening. Chest 101(4), 1013–1018 (1992)

    Google Scholar 

  4. Mulshine, J.L.: Clinical issues in the management of early lung cancer. Clin. Cancer Res. 11(13), 4993s–4998s (2005)

    Article  Google Scholar 

  5. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int. Journal of Computer Vision 50(1), 35–61 (2002)

    Article  MATH  Google Scholar 

  6. McCulloch, C.C., Kaucic, R.A., Mendonça, P.R.S., Walter, D.J., Avila, R.S.: Model-based detection of lung nodules in computed tomography exams. Academic Radiology 11(3), 258–266 (2004)

    Article  Google Scholar 

  7. Dobigeon, N., Tourneret, J.Y., Scargle, J.D.: Joint segmentation of multivariate astronomical time series: Bayesian sampling with a hierarchical model. IEEE Trans Signal Processing 55(2), 414–423 (2007)

    Article  Google Scholar 

  8. Sluimer, I., Schilham, A., Prokop, M., van Ginneken, B.: Computer analysis of computed tomography scans of the lung: A survey. EEE Trans. Med. Imag. 25(4), 385–405 (2006)

    Article  Google Scholar 

  9. Sato, Y., Westin, C., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans. Visualization and Computer Graphics 6(2), 160–180 (2000)

    Article  Google Scholar 

  10. Paik, D.S., Beaulieu, C.F., Rubin, G.D., Acar, B., Jeffrey, J.R.B., Yee, J., Dey, J., Napel, S.: Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Trans. Med. Imag. 23(6), 661–675 (2004)

    Article  Google Scholar 

  11. ELCAP : International early cancer action program — Protocol (2003), http://icscreen.med.cornell.edu/ielcap.pdf

  12. Farag, A.A., El-Baz, A., Gimel’farb, G.G., El-Ghar, M.A., Eldiasty, T.: Quantitative nodule detection in low dose chest CT scans: New template modeling and evaluation for CAD system design. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 720–728. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Mendonça, P.R.S., Bhotika, R., Sirohey, S., Turner, W.D., Miller, J.V., Avila, R.S.: Model-based analysis of local shape for lesion detection in CT scans. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 688–695. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Yoshida, H., Näppi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imag. 20(12), 1261–1274 (2001)

    Article  Google Scholar 

  15. Vos, F.M., Serlie, I.W.O., van Gelder, R.E., Post, F.H., Truyen, R., Gerritsen, F.A., Stoker, J., Vossepoel, A.M.: A new visualization method for virtual colonoscopy. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 645–654. Springer, Heidelberg (2001)

    Google Scholar 

  16. Efron, B.: Bayesians, frequentists, and scientists. J. Amer. Stat. Assoc. 100(469), 1–5 (2005)

    Article  Google Scholar 

  17. Jeffreys, H.: An invariant form for the prior probability in estimation problems. In: Proc. Royal Soc. London A, 186(1007), pp. 453–461(1946)

    Google Scholar 

  18. Kass, R.E., Wasserman, L.: The selection of prior distributions by formal rules. J. Amer. Stat. Assoc. 91(435), 1343–1370 (1996)

    Article  MATH  Google Scholar 

  19. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  20. Martin, J., Pentland, A., Sclaroff, S., Kikinis, R.: Characterization of neuropathological shape deformations. PAMI 20(2), 970–1112 (1998)

    Google Scholar 

  21. Ow, W., Golland, P.: From spatial regularization to anatomical priors in fMRI analysis. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 88–100. Springer, Heidelberg (2005)

    Google Scholar 

  22. Gerig, G., Styner, M., Shenton, M.E., Lieberman, J.A.: Shape versus size: Improved understanding of the morphology of brain structures. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 24–32. Springer, Heidelberg (2001)

    Google Scholar 

  23. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (2004)

    Google Scholar 

  24. Krahnstoever, N.: Personal communication, http://vision.cse.psu.edu/krahnsto/index.html

  25. Kass, R.T., Raftery, A.E.: Bayes factors. J. Amer. Stat. Assoc. 90(430), 773–795 (1995)

    Article  MATH  Google Scholar 

  26. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  27. Swensen, S.J., Jett, J.R., Hartman, T.E., Midthun, D.E., Sloan, J.A., Sykes, A.M., Aughenbaugh, G.L., Clemens, M.A.: Lung cancer screening with CT: Mayo clinic experience. Radiology 226(3), 756–761 (2003)

    Article  Google Scholar 

  28. Murray, C.D.: The physiological principle of minimum work. I. The vascular system and the cost of blood flow. Proc. Natl. Acad. Sci. 12(3), 207–214 (1926)

    Google Scholar 

  29. Bennett, S.H., Eldridge, M.W., Puente, C.E., Riedi, R.H., Nelson, T.R., Beotzman, B.W., Milstein, J.M., Singhal, S.S., Horsfield, K., Woldenberg, M.J.: Origin of fractal branching complexity in the lung (Preprint 2000)

    Google Scholar 

  30. Karau, K.L., Krenz, G.S., Dawson, C.A.: Branching exponent heterogeneity and wall shear stress distribution in vascular trees. Am. J. Physiol. — Heart Circ. Physiol. 280(3), 1256–1263 (2001)

    Google Scholar 

  31. Piacsek, K.L.: Personal communication (XX)

    Google Scholar 

  32. Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.: Morphometry of the human pulmonary arterial tree. Circ. Res. 33(2), 190–197 (1973)

    Google Scholar 

  33. Zhao, F., Mendonça, P.R.S., Bhotika, R., Miller, J.V.: Model-based junction detection with applications to lung nodule detection. In: ISBI (April 2007)

    Google Scholar 

  34. van Ginneken, B., ter Haar Romeny, B.M., Viegever, M.A.: Computer-aided diagnosis in chest radiography: A survey. IEEE Trans. Med. Imag. 20(12), 1228–1241 (2001)

    Article  Google Scholar 

  35. Rubin, G.D., Lyo, J.K., Paik, D.S., Sherbondy, A.J., Chow, L.C., Leung, A.N., Mindelzun, R., Schraedley-Desmond, P.K., Zinck, S.E., Naidich, D.P., Napel, S.: Pulmonary nodules on multi-detector row CT scans: Performance comparison of radiologists and computer-aided detection. Radiology 234(1), 274–283 (2005)

    Article  Google Scholar 

  36. Mendonca, P.R.S., Bhotika, R., Miller, J.V.: Probability distribution of curvatures of isosurfaces in gaussian random fields. arXiv:math-ph/0702031v2 (February 2007), http://www.citebase.org/abstract?id=oai:arXiv.org:math-ph/0702031

  37. IbĂ¡Ă±ez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Second edn. (Nov 2005), http://www.itk.org/ItkSoftwareGuide.pdf

  38. He, X., Metz, C.E., Tsui, B.M.W., Links, J.M., Frey, E.C.: Three-class ROC analysis — A decision theoretic approach under the ideal observer framework. IEEE Trans. Med. Imag. 25(5), 571–581 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mendonça, P.R.S., Bhotika, R., Zhao, F., Miller, J.V. (2007). Lung Nodule Detection Via Bayesian Voxel Labeling. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics