Skip to main content

How Does the Brain Create, Change, and Selectively Override its Rules of Conduct?

  • Chapter
Neurodynamics of Cognition and Consciousness

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

How do we know to talk openly to our friends but be guarded with strangers? How do we move between work place, club, and house of worship and fit our behavior to each setting? How do we develop context-dependent rules about what we may eat? We solve such problems readily, but are a long way from designing intelligent systems that can do so. Yet enough is known about cognitive and behavioral functions of three regions of prefrontal cortex, and their subcortical connections, to suggest a neural theory of context-dependent rule formation and learning. Rules that an individual follows can change, either because of personal growth or change in stress. This can be partly explained by the interplay between signals from the hippocampus, signifying task relevance, and the amygdala, signifying emotional salience. Both sets of signals influence the basal ganglia gate that selectively disinhibits behaviors in response to context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Armony, D. Servan-Schreiber, J. D. Cohen, and J. E. LeDoux. An anatomically constrained neural network model of fear conditioning. Behavioral Neuroscience, 109:246–257, 1995.

    Article  Google Scholar 

  2. J. L. Armony, D. Servan-Schreiber, J. D. Cohen, and J. E. LeDoux. Computational modeling of emotion: Explorations through the anatomy and physiology of fear conditioning. Trends in Cognitive Sciences, 1:28–34, 1997.

    Article  Google Scholar 

  3. J. F. Bates. Multiple information processing domains in prefrontal cortex of rhesus monkey. Unpublished doctoral dissertation, Yale University, 1994.

    Google Scholar 

  4. M.M. Botvinick, T. S. Braver, D.M. Barch, C. S. Carter, and J. D. Cohen. Conflict monitoring and cognitive control. Psychological Review, 108:624–652, 2001.

    Article  Google Scholar 

  5. J. W. Brown and T. S. Braver. Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307:1118–1121, 2005.

    Article  Google Scholar 

  6. J. W. Brown, D. Bullock, and S. Grossberg. How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. Journal of Neuroscience, 19:10502–10511, 1999.

    Google Scholar 

  7. J. W. Brown, D. Bullock, and S. Grossberg. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 17:471–510, 2004.

    Google Scholar 

  8. R. M. Buijs and C. G. Van Eden. The integration of stress by the hypothalamus, amygdala, and prefrontal cortex: Balance between the autonomic nervous system and the neuroendocrine system. Progress in Brain Research, 127:117–132, 2000.

    Google Scholar 

  9. G. Bush, P. Luu, and M. I. Posner. Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Science, 4:215–222, 2000.

    Article  Google Scholar 

  10. G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54–115, 1987.

    Article  Google Scholar 

  11. M. M. Cho, C. DeVries, J. R. Williams, and C. S. Carter. The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (microtus ochrogaster). Behavioral Neuroscience, 113:1071–1079, 1999.

    Article  Google Scholar 

  12. R. Cloninger. A new conceptual paradigm from genetics and psychobiology for the science of mental health. Australia and New Zealand Journal of Psychiatry, 33:174–186, 1999.

    Article  Google Scholar 

  13. M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, pp. 815–826, 1983.

    MathSciNet  Google Scholar 

  14. M. Csikszentmihalyi. Flow: The psychology of optimal experience. New York, Harper and Row, 1990.

    Google Scholar 

  15. A. R. Damasio. Descartes? error: Emotion, reason, and the human brain. New York: Grosset/Putnam, 1994.

    Google Scholar 

  16. S. Dehaene and J. P. Changeux. The wisconsin card sorting test: Theoretical analysis and modeling in a neural network. Cerebral Cortex, 1:62–79, 1991.

    Article  Google Scholar 

  17. R. Dias, T. W. Robbins, and A. C. Roberts. Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380:69–72, 1996.

    Article  Google Scholar 

  18. R. Eisler and D. S. Levine. Nurture, nature, and caring: We are not prisoners of our genes. Brain and Mind, 3:9–52, 2002.

    Article  Google Scholar 

  19. J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: a critical analysis. In S. Pinker and J. Mehler (Editors), Connections and Symbols, Cambridge, MA: MIT Press, pp. 3–71, 1988.

    Google Scholar 

  20. M. J. Frank and E. D. Claus. Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.Psychological Review, 113:300–326, 2006.

    Article  Google Scholar 

  21. M. J. Frank, B. Loughry, and R. C. OReilly. Interactions between frontal cortex and basal ganglia in working memory. Cognitive, Affective, and Behavioral Neuroscience, 1:137–160, 2001.

    Article  Google Scholar 

  22. D. Gaffan and E. A. Murray. Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey. Journal of Neuroscience, 10:3479–3493, 1990.

    Google Scholar 

  23. S. Grossberg. A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology, 18:263–327, 1975.

    Article  Google Scholar 

  24. S. Grossberg and D. S. Levine. Some developmental and attentional biases in the contrast enhancement and short-term memory of recurrent neural networks. Journal of Theoretical Biology, 53:341–380, 1975.

    Article  MathSciNet  Google Scholar 

  25. S. Grossberg and D. Seidman. Neural dynamics of autistic behaviors: Cognitive, emotional, and timing substrates. Psychological Review, 113:483–525, 2006.

    Article  Google Scholar 

  26. J. M. Healy. Endangered minds: Why children don?t think and what we can do about it. New York: Simon and Schuster, 1999.

    Google Scholar 

  27. G. E. Hinton and T. J. Sejnowski, Learning and relearning in Boltzmann machines. In D. E. Rumelhart J. L.McClelland (Editors), Parallel Distributed Processing, Cambridge, MA, MIT Press, 1:282–317 1986.

    Google Scholar 

  28. C. B. Holroyd and M. G. H. Coles. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109: 679–709 2002.

    Article  Google Scholar 

  29. N. G. Jani and D. S. Levine. A neural network theory of proportional analogy-making. Neural Networks, 13:149–183 2000.

    Article  Google Scholar 

  30. W. Kilmer, W. S. McCulloch, and J. Blum. A model of the vertebrate central command system. International Journal of Man-Machine Studies, 1:279–309 1969.

    Google Scholar 

  31. S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680 1983.

    Article  MathSciNet  Google Scholar 

  32. A. H. Klopf. The Hedonistic Neuron. Washington, DC: Hemisphere, 1982.

    Google Scholar 

  33. L. Kohlberg. Essays on moral development: Vol. 1: The philosophy of moral development. San Francisco: Harper and Row, 1981.

    Google Scholar 

  34. G. F. Koob. Corticotropin-releasing factor, norepinephrine, and stress. Biological Psychiatry, 46:1167–1180 1999.

    Article  Google Scholar 

  35. J. E. LeDoux. The Emotional Brain. New York: Simon and Schuster, 1996.

    Google Scholar 

  36. J. E. LeDoux. Emotion circuits in the brain. Annual Review of Neuroscience, 23:155–184 2000.

    Article  Google Scholar 

  37. S. J. Leven. Creativity: Reframed as a biological process. In K. H. Pribram (Editor), Brain and Values: Is a Biological Science of Values Possible?, Mahwah, NJ: Erlbaum, pp. 427–470 1998.

    Google Scholar 

  38. S. J. Leven and D. S. Levine. Multiattribute decision making in context: A dynamic neural network methodology. Cognitive Science, 20:271–299 1996.

    Article  Google Scholar 

  39. D. S. Levine. Angels, devils, and censors in the brain. ComPlexus, 2:35–59 2005.

    Article  Google Scholar 

  40. D. S. Levine, B. A. Mills, and S. Estrada. Modeling emotional influences on human decision making under risk. In: Proceedings of International Joint Conference on Neural Networks, pp. 1657–1662, Aug 2005.

    Google Scholar 

  41. P. D. MacLean. The triune brain, emotion, and scientific bias. In F. Schmitt (Editor), The Neurosciences Second Study Program, New York: Rockefeller University Press, pp. 336–349, 1970.

    Google Scholar 

  42. A. H. Maslow. Toward a psychology of being. Naew York: Van Nostrand, 1968.

    Google Scholar 

  43. S. M.McClure, M. S. Gilzenrat, and J. D. Cohen. An exploration-exploitation model based on norepinephrine and dopamine activity. Presentation at the annual conference of the Psychonomic Society, 2006.

    Google Scholar 

  44. P. R. Montague and G. S. Berns. Neural economics and the biological substrates of valuation. Neuron, 36:265–284, 2002.

    Article  Google Scholar 

  45. W. J. H. Nauta. The problem of the frontal lobe: A reinterpretation. Journal of Psychiatric Research, 8:167–187, 1971.

    Article  Google Scholar 

  46. J. Newman and A. A. Grace. Binding across time: The selective gating of frontal and hippocampal systems modulating working memory and attentional states. Consciousness and Cognition, 8:196–212, 1999.

    Article  Google Scholar 

  47. P. O’Donnell and A. A. Grace. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. Journal of Neuroscience, 15:3622–3639, 2005.

    Google Scholar 

  48. J. Olds. Physiological mechanisms of reward. In M. Jones (Editor), Nebraska Symposium on Motivation, Lincoln: University of Nebraska Press, pp. 73–142, 1955.

    Google Scholar 

  49. D. N. Pandya and E. H. Yeterian. Morphological correlates of human and monkey frontal lobe. In A. R. Damasio, H. Damasio, and Y. Christen (Editors), Neurobiology of Decision Making, Berlin: Springer, pp. 13–46, 1995.

    Google Scholar 

  50. J. W. Papez. A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38:725–743, 1937.

    Google Scholar 

  51. L. I. Perlovsky. Toward physics of the mind: Concepts, emotions, consciousness, and symbols. Physics of Life Reviews, 3:23–55, 2006.

    Article  Google Scholar 

  52. L. Pessoa, S. Kastner, and L. G. Ungerleider. Attentional control of the processing of neutral and emotional stimuli. Brain Research: Cognitive Brain Research, 15:31–45, 2002.

    Article  Google Scholar 

  53. L. Pessoa, M. McKenna, E. Gutierrez, and L. G. Ungerleider. Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences, 99:11458–11465, 2002.

    Google Scholar 

  54. M. Posner and S. Petersen. The attention system of the human brain. Annual Reviewof Neuroscience, 13:25–42, 1990.

    Article  Google Scholar 

  55. E. T. Rolls. The orbitofrontal cortex and reward. Cerebral Cortex, 10:284–294, 2000.

    Article  Google Scholar 

  56. R. M. Sapolsky. Stress and plasticity in the limbic system. Neurochemical Research, 28:1735–1742.

    Google Scholar 

  57. J. G. Taylor and N. F. Fragopanagos. The interaction of attention and emotion. Neural Networks, 18:353–369, 2005.

    Article  Google Scholar 

  58. H. Yamasaki, K. LaBar, and G. McCarthy. Dissociable prefrontal brain systems for attention and emotion. Proceedings of the National Academy of Sciences, 99:11447–11451, 2002.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levine, D.S. (2007). How Does the Brain Create, Change, and Selectively Override its Rules of Conduct?. In: Perlovsky, L.I., Kozma, R. (eds) Neurodynamics of Cognition and Consciousness. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73267-9_8

Download citation

Publish with us

Policies and ethics