Advertisement

Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with Structural EM

  • Yu Zhang
  • Zhidong Deng
  • Hongshan Jiang
  • Peifa Jia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4544)

Abstract

Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site data. Only based on mRNA expression data, it is not enough to accurately estimate a gene network. It is difficult for us to estimate a gene network accurately only with the mRNA expression data. In this paper, we use the transcription factor binding location data in order to introduce the prior knowledge to SEM-DBN model. Gene expression data are also exploited specifically for likelihood. Meanwhile, we incorporate the prior knowledge into every learning step by SEM rather than only learning from the very beginning, which can compensate the attenuation of the effect with location data. The effectiveness of our proposed method is demonstrated through the analysis of Saccharomyces cerevisiae cell cycle data. The combination of heterogeneous data from multiple sources ensures that our results are more accurate than those recovered from only gene expression data alone.

Keywords

gene regulatory networks dynamic Bayesian network structural Expectation Maximization microarray data transcription factor binding location data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imoto, S., Higuchi, T., Goto, T., Miyano, S.: Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks. Statistical Methodology, 1–16 (2006)Google Scholar
  2. 2.
    Liang, S., Fuhrman, S., Somoyi, R.: REVEAL: a general reverse engineering algorithm for inference of genetic network architectures. In: Proc. Pacific Symposium on Biocomputing, pp. 18–29 (1998)Google Scholar
  3. 3.
    Akutsu, S., Miyano, S., Kuhara, S.: Algorithms for inferring qualitative models of biological networks. In: Proc. Pacific Symposium on Biocomputing, pp. 290–301 (2000)Google Scholar
  4. 4.
    Chen, T., He, H.L., Church, M.: Modeling gene expression with differential equation. In: Proc. Pacific Symposium on Biocomputing, pp. 29–40 (1999)Google Scholar
  5. 5.
    D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mRNA expression levels during CNS development and injury. In: Proc.Pacific Symposium on Biocomputing, pp. 41–52 (1999)Google Scholar
  6. 6.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Computational Biology, 601–620 (2000)Google Scholar
  7. 7.
    Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Combing location and expression data for principled discovery of genetic regulatory network models. In: Proc. Pacific Symposium on Biocomputing, pp. 437–449 (2002)Google Scholar
  8. 8.
    Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Proc. Pacific Symposium on Biocomputing, pp. 175–186 (2002)Google Scholar
  9. 9.
    Segal, E., Yelensky, R., Koller, D.: From Promoter Sequence to Expression: A Probabilistic Framework. Bioinformatics, 273–282 (2003)Google Scholar
  10. 10.
    Bar-Joseph, Z., et al.: From promoter sequence to expression: A probabilistic framework. Nature Biotechnology, 1337–1341 (2003)Google Scholar
  11. 11.
    Bernard, A., Hartemink, A.: Informative structure priors: Joint learning of dynamic regulatiory networks from multiple types of data. In: Proc. Pacific Symposium on Biocomputing, pp. 459–470 (2005)Google Scholar
  12. 12.
    Pilpel, Y., Sudarsanam, P., Church, G.M.: Regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 153–162 (2001)Google Scholar
  13. 13.
    Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Estimating gene networks from gene expression data by combing Bayesian network model with promoter element detection. Bioinformatics, 227–236 (2003)Google Scholar
  14. 14.
    Nariai, N., Kim, S., Imoto, S., Miyano, S.: Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian network. In: Proc. Pacific Symposium on Biocomputing, pp. 336–347 (2004)Google Scholar
  15. 15.
    Li, S.P., Tseng, J.J., Wang, S.C.: Reconstructing gene regulatory networks from time-series microarray data. Physica, 63–69 (2005)Google Scholar
  16. 16.
    Murphy,K., Mian,S.: Modelling gene expression data using dynamic Bayesian networks. Technology Report, Computer Science Division, University of California Berkeley, CA, (1999)Google Scholar
  17. 17.
    Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 2271–2282 (2003)Google Scholar
  18. 18.
    Wu, C.C., Huang, H.C., Juan, H.F., Chen, S.T.: GeneNetwork: An interactive tool for reconstruction of genetic network using microarray data. Supplementary information, Taiwan (2003)Google Scholar
  19. 19.
    Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 57–65 (2004)Google Scholar
  20. 20.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. Conf. Uncertainty in Aritif. Intell, pp. 139–147 (1998)Google Scholar
  21. 21.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Aders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccaromyces Cerevisiae by microarray hybridization. Mol. Biol. Cell, pp. 3273–3297 (1998)Google Scholar
  22. 22.
    Lee, T., et al.: Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science, 799–804 (2002)Google Scholar
  23. 23.
    Home page of KEGG: http://www.genome.ad.jp/kegg
  24. 24.
    Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 3594–3603 (2004)Google Scholar
  25. 25.
    Zhang, Y., Deng, Z., Jiang, H., Jia, P.: Gene regulatory network constructiong using dynamic Bayesian network (DBN) with structure expectation maximization. In: Proc. International Conference on Bioinformatics and Computational Biology (BIOCOMP’06), pp. 41–47 (2006)Google Scholar
  26. 26.
    Gevaert, O., Smet, F.D., Timmerman, D., Moreau, Y., Moor, B.D.: Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks Bioinformatics, pp. e184–e190 (2006)Google Scholar
  27. 27.
    Merwe, R., Doucet, A., Freitas, N., Wan, E.: The Unscented Particle Filter. Technical Report, Cambridge University Engineering Department (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Yu Zhang
    • 1
  • Zhidong Deng
    • 1
  • Hongshan Jiang
    • 2
  • Peifa Jia
    • 1
  1. 1.State Key Laboratory of Intelligent Technology and System, Computer Science and Technology Department, Tsinghua University, Beijing, 100084China
  2. 2.Department of Computer Science, Tsinghua University, Beijing, 100084China

Personalised recommendations