Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1184 Accesses

Intensity-modulated radiation therapy (IMRT) has become more and more popular in head and neck radiotherapy. Its ability to generate complex-shaped and tight dose gradients between the targets and the surrounding organs at risk (OARs) brings an undeniable dosimetrical advantage over nonmodulated external-beam two-dimensional (2D) and threedimensional (3D) radiation techniques. This makes IMRT especially suitable to confi ne the prescribed high doses to the target volumes (TVs), limiting thus the dose delivered to the OARs.

Maximizing the therapeutic index by such technique however requires optimal and precise selection and delineation of both TVs and OARs. Indeed, incomplete TVs coverage may lead to marginal tumor recurrence, thus possibly compromising patient's outcome. On the other hand, overestimation of the TVs would potentially lead to an overdosage of normal tissues with a possible increase in complication probability. In this regard, clinicians may have different opinion on how to balance the risk of potentially missing part of the TVs and the risk of excessive normal tissue irradiation. This may account for some of the differences among physicians on how conservatively they delineate targets. This issue partially explains the large interobserver variability in both selecting and outlying the targets, these interobserver differences in these tasks surpassing physical dose coverage defi ciencies of the targets or dose uncertainties due to setup variations (Hong et al. 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apisarnthanarax S, Elliott DD, El-Naggar AK et al. (2006) Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes. Int J Radiat Oncol Biol Phys 64(3):678–683

    PubMed  Google Scholar 

  • Ashamalla H, Guirgius A, Bieniek E et al. (2007) The impact of positron emission tomography/computed tomography in edge delineation of gross tumor volume for head and neck cancers. Int J Radiat Oncol Biol Phy 68(2): 388–395

    Article  Google Scholar 

  • Benchaou M, Lehmann W, Slosman DO et al. (1996) The role of FDG-PET in the preoperative assessment of n-staging in head and neck cancer. Acta Otolaryngol 116(2):332–335

    Article  PubMed  CAS  Google Scholar 

  • Black QC, Grills IS, Kestin LL et al. (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 60(4):1272–1282

    PubMed  Google Scholar 

  • Breen SL, Publicover J, De Silva S et al. (2007) Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 68(3):763–770

    PubMed  Google Scholar 

  • Byers RM (1985) Modified neck dissection. A study of 967 cases from 1970 to 1980. Am J Surg 150(4):414–421

    Article  PubMed  CAS  Google Scholar 

  • Byers RM, Weber RS, Andrews T et al. (1997) Frequency and therapeutic implications of “skip metastases” in the neck from squamous carcinoma of the oral tongue. Head Neck 19(1):14–19

    Article  PubMed  CAS  Google Scholar 

  • Chao KS, Bosch WR, Mutic S et al. (2001) A novel approach to overcome hypoxic tumor resistance: Cu-Atsm-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49(4):1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Chao KS, Ozyigit G, Tran BN et al. (2003) Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 55(2):312–321

    PubMed  Google Scholar 

  • Chao KS, Wippold FJ, Ozyigit G et al. (2002) Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int J Radiat Oncol Biol Phys 53(5):1174–1184

    Article  PubMed  Google Scholar 

  • Ciernik IF, Dizendorf E, Baumert BG et al. (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57(3):853–863

    PubMed  Google Scholar 

  • Cooper JS, Mukherji SK, Toledano AY et al. (2007) An evaluation of the variability of tumor-shape definition derived by experienced observers from CT images of supraglottic carcinomas (ACRIN protocol 6658). Int J Radiat Oncol Biol Phys 67(4):972–975

    PubMed  Google Scholar 

  • Daisne JF, Duprez T, Weynand B et al. (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233(1):93–100

    Article  PubMed  Google Scholar 

  • Daisne JF, Sibomana M, Bol A et al. (2003) Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 69(3):247–250

    Article  PubMed  Google Scholar 

  • Dammann F, Horger M, Mueller-Berg M et al. (2005) Rational diagnosis of squamous cell carcinoma of the head and neck region: comparative evaluation of CT, MRI, and 18FDG PET. AJR Am J Roentgenol 184(4):1326–1331

    PubMed  Google Scholar 

  • Dawson LA, Anzai Y, Marsh L et al. (2000) Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 46(5): 1117–1126

    PubMed  CAS  Google Scholar 

  • Eisbruch A (2004) Dysphagia and aspiration following chemo-irradiation of head and neck cancer: major obstacles to intensification of therapy. Ann Oncol 15(3):363–364

    Article  PubMed  Google Scholar 

  • Eisbruch A (2007) Reducing xerostomia by IMRT: what may, and may not, be achieved. J Clin Oncol 25(31):4863–4864

    Article  PubMed  Google Scholar 

  • Eisbruch A, Foote RL, O'Sullivan B et al. (2002a) Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin Radiat Oncol 12(3):238–249

    Article  Google Scholar 

  • Eisbruch A, Levendag PC, Feng FY et al. (2007) Can IMRT or brachytherapy reduce dysphagia associated with chemo-radiotherapy of head and neck cancer? The Michigan and Rotterdam experiences. Int J Radiat Oncol Biol Phys 69(2 Suppl):S40–S42

    PubMed  Google Scholar 

  • Eisbruch A, Lyden T, Bradford CR et al. (2002b) Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 53(1):23–28

    Google Scholar 

  • Eisbruch A, Marsh LH, Dawson LA et al. (2004a) Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys 59(1):28–42

    Google Scholar 

  • Eisbruch A, Schwartz M, Rasch C et al. (2004b) Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys 60(5):1425–1439

    Google Scholar 

  • Feng FY, Kim HM, Lyden TH et al. (2007) Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose–effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 68(5): 1289–1298

    PubMed  Google Scholar 

  • Geets X, Daisne JF, Arcangeli S et al. (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between ct-scan and MRI. Radiother Oncol 77(1):25–31

    Article  PubMed  Google Scholar 

  • Geets X, Daisne JF, Tomsej M et al. (2006) Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 78(3):291–297

    Article  PubMed  Google Scholar 

  • Geets X, Lee JA, Bol A et al. (2007a) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34(9):1427–1438

    Article  Google Scholar 

  • Geets X, Tomsej M, Lee JA et al. (2007b) Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: IMPACT on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85(1):105–115

    Article  Google Scholar 

  • Grégoire V, Coche E, Cosnard G et al. (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol 56(2):135–150

    Article  PubMed  Google Scholar 

  • Gregoire V, Daisne JF, Geets X (2005) Comparison of CT- and FDG-PET-defined GT: in regard to paulino et al. (Int J Radiat Oncol Biol Phys 2005;61:1385–1392). Int J Radiat Oncol Biol Phys 63(1):308–309; author reply 309

    PubMed  Google Scholar 

  • Grégoire V, Daisne JF, Geets X et al. (2003a) Selection and delineation of target volumes in head and neck tumors: beyond ICRU definition. Rays 28(3):217–224

    Google Scholar 

  • Grégoire V, Levendag P, Ang KK et al. (2003b) Ct-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 69(3):227–236

    Article  Google Scholar 

  • Grosu AL, Souvatzoglou M, Röper B et al. (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69(2):541–551

    PubMed  CAS  Google Scholar 

  • Hermans R, Van der Goten A, Baert AL (1997) Image interpretation in CT of laryngeal carcinoma: a study on intra- and interobserver reproducibility. Eur Radiol 7(7):1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Hong TS, Chappell RJ, Harari PM (2004) Variations in target delineation for head and neck IMRT: an international multi-institutional study. Int J Radiat Oncol Biol Phys 60:S157

    Article  Google Scholar 

  • Jeanneret-Sozzi W, Moeckli R, Valley JF et al. (2006) The reasons for discrepancies in target volume delineation: a SASRO study on head-and-neck and prostate cancers. Strahlenther Onkol 182(8):450–457

    Article  PubMed  Google Scholar 

  • Jeong HS, Baek CH, Son YI et al. (2007) Use of integrated 18F-FDG PET/CT to improve the accuracy of initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma. Head Neck 29(3):203–210

    Article  PubMed  Google Scholar 

  • Laubenbacher C, Saumweber D, Wagner-Manslau C et al. (1995) Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 36(10):1747–1757

    PubMed  CAS  Google Scholar 

  • Lin CY, Lee LY, Huang SF et al. (2008a) Treatment outcome of combined modalities for buccal cancers: unilateral or bilateral neck radiation? Int J Radiat Oncol Biol Phys 70(5):1373–1381

    Google Scholar 

  • Lin Z, Mechalakos J, Nehmeh S et al. (2008b) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70(4):1219–1228

    Google Scholar 

  • Ling CC, Humm J, Larson S et al. (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3):551–560

    Article  PubMed  CAS  Google Scholar 

  • Madani I, Duthoy W, Derie C et al. (2007) Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 68(1):126–135

    PubMed  Google Scholar 

  • McGuirt WF, Williams DW, Keyes JW et al. (1995) A comparative diagnostic study of head and neck nodal metastases using positron emission tomography. Laryngoscope 105 (4 Pt 1):373–375

    Article  PubMed  CAS  Google Scholar 

  • Nishioka T, Shiga T, Shirato H et al. (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 53(4):1051–1057

    PubMed  Google Scholar 

  • O'Sullivan B, Warde P, Grice B et al. (2001) The benefits and pitfalls of ipsilateral radiotherapy in carcinoma of the ton-sillar region. Int J Radiat Oncol Biol Phys 51(2):332–43 (erratum in Int J Radiat Oncol Biol Phys 2001;51(5):1465).

    PubMed  Google Scholar 

  • Paulino AC, Koshy M, Howell R et al. (2005) Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61(5):1385–1392

    PubMed  Google Scholar 

  • Riegel AC, Berson AM, Destian S et al. (2006) Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 65(3):726–732

    PubMed  Google Scholar 

  • Robbins KT (1998) Classification of neck dissection: current concepts and future considerations. Otolaryngol Clin North Am 31(4):639–655

    Article  PubMed  CAS  Google Scholar 

  • Robbins KT (1999) Integrating radiological criteria into the classification of cervical lymph node disease. Arch Otolaryngol Head Neck Surg 125(4):385–387

    PubMed  CAS  Google Scholar 

  • Som PM (1997) The present controversy over the imaging method of choice for evaluating the soft tissues of the neck. AJNR Am J Neuroradiol 18(10):1869–1872

    PubMed  CAS  Google Scholar 

  • Som PM, Curtin HD, Mancuso AA (1999) An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classifications. Arch Otolaryngol Head Neck Surg 125(4):388–396

    PubMed  CAS  Google Scholar 

  • Stokkel MP, ten Broek FW, Hordijk GJ et al. (2000) Preoperative evaluation of patients with primary head and neck cancer using dual-head 18fluorodeoxyglucose positron emission tomography. Ann Surg 231(2):229–234

    Article  PubMed  CAS  Google Scholar 

  • Stuckensen T, Kovács AF, Adams S et al. (2000) Staging of the neck in patients with oral cavity squamous cell carcinomas: a prospective comparison of PET, ultrasound, CT and MRI. J Craniomaxillofac Surg 28(6):319–324

    PubMed  CAS  Google Scholar 

  • Vanderstraeten B, Duthoy W, De Gersem W et al. (2006) [18F] fluoro-deoxy-glucose positron emission tomography ([18F] FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 79(3):249–258

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geets, X., Grégoire, V. (2009). Target Definition and Delineation CT/MRI/PET-Guided Targets. In: Harari, P.M., Connor, N.P., Grau, C. (eds) Functional Preservation and Quality of Life in Head and Neck Radiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73232-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73232-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73231-0

  • Online ISBN: 978-3-540-73232-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics