Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 361))

  • 800 Accesses

Abstract

The oscillatory behavior in two controlled processes is presented in this chapter. The two study cases can permit further numerical or analytical research that, on the one hand, allows for an evaluation of new criteria on dynamics of controlled systems and, on the other, leads to new pictures featuring nonlinear (possibly chaotic) dynamics. The former is a feedback-controlled digester which is interconnected with heat exchanger via recycle stream. Oscillations in temperature bioreactor is studied in this case. The process is an anaerobic digestion for distillery vinasses and a heat exchanger. The heat exchanger is basically controlled by a Proportional-Integral-Derivative feedback (PID control) while the bioreactor is controlled by a feedback law with uncertainties compensation. In fact, the first case corresponds to the bioreactor discussed in Part II of this book. The latter is open-loop controlled, and concerns to gas-liquid tide column. Such a gas-liquid column can exhibit three classes of dynamical behavior: bubbling (disperse fluid-flow), vortical-spiral type, and turbulent (three-region) regime. Both processes have recycle streams, and their time series are analyzed exploiting Poincaré maps, maximum Lyapunov exponents and power spectrum density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Andrés-Toro, J.M. Girón-Sierra, J.A. López-Orozco, F. Fernández-Conde, J.M. Peinado, and F. García-Ochoa. Math. and Comp. in Simulations, 48:65–74, 1998.

    Article  Google Scholar 

  2. H. Aref and S.W. Jones. Chaotic motion of a solid throught ideal fluid. Phys. Fluid. A, 5(12):3026–3028, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Argoul, J. Huth, P. Merzeau, A. Arnéodo, and H.L. Swinney. Experimental evidence for homoclinic chaos in an electrochemical growth process. Physica D, 62(l-4):170–185, 1993.

    Article  MATH  Google Scholar 

  4. A. Arnéodo, F. Argoul, J. Elezgaray, and P. Richetti. Homoclinic chaos in chemical systems. Physica D, 62(1-4):134–169, 1993.

    Article  MATH  Google Scholar 

  5. H. Bai-Lin. Chaos II. World Scientific, Singapore, 1990.

    MATH  Google Scholar 

  6. G.L. Baker and J.P. Gollub. Chaotic Dynamics: An introduction. Cambridge Univ. Press, Cambridge, 1990.

    MATH  Google Scholar 

  7. M. Berezowski. Effect of delay time on the generation of chaos in continuous systems. One-dimensional model. Two-dimensional model–tubular chemical reactor with recycle. Chaos, Solitons & Fractals, 12(1):83–89, 2001.

    Article  MATH  Google Scholar 

  8. O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, and J.P. Steyer. Dynamical model development and parameter identification for anaerobic wastewater treatment process. Biotechnol. Bioeng., 75(4):424–438, 2001.

    Article  Google Scholar 

  9. A. Biesheuvel and L. van Wijngaarden. Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech., 148:301–318, 1984.

    Article  MATH  Google Scholar 

  10. R.C. Chen, J. Reese, and L.S. Fan. Flow structure in a three-dimensional bubble column and three-phase fluidized bed. A.I.Ch.E. Journal, 40(7):1093–1104, 1994.

    Google Scholar 

  11. T. Chevalier, A. Freund, and J. Ross. The effects of a nonlinear delayed feedback on a chemical reaction. J. Chem. Phys., 95:308–316, 1991.

    Article  Google Scholar 

  12. E. Colli, V.S.M. Piassi, A. Tufaile, and J.C. Sartorelli. Bistability in bubble formation. Phys. Rev. E, 70(6):066215, 2004.

    Article  Google Scholar 

  13. F. Colonius and W. Kliemann. The Dynamics of Control. Birkhäusser, Boston, 2000.

    Google Scholar 

  14. N. Devanathan, M.P. Dudukovic, A. Lapin, and A. Lübbert. Chaotic flow in bubble column reactors. Chem. Eng. Sci., 50(16):2661–2667, 1995.

    Article  Google Scholar 

  15. D. Dochain and G. Bastin. Modelling and Control of Biotechnological Processes. Pergamont Press, Oxford UK., 1986.

    Google Scholar 

  16. M. Dolnik and E.M. Bollt. Communications with chemical chaos in the presence of noise. Chaos, 8(3):702–710, 1998.

    Article  MATH  Google Scholar 

  17. J. Drahoš, F. Bradka, and M. Punčochář. Fractal behaviour of pressure fluctuations in a bubble column. Chem. Eng. Sci., 47(15-16):4069–4075, 1993.

    Article  Google Scholar 

  18. L.S. Fan. Gas-Liquid Fluidization Engineering. Butterworth, Stoneham, MA, 1989.

    Google Scholar 

  19. J.D. Farmer, E. Ott, and J.A. Yorke. The dimension of chaotic attractors. Physica D, 7(1-3):153–180, 1983.

    Article  MathSciNet  Google Scholar 

  20. R. Femat. Chaos in a class of reacting systems induced by robust asymptotic feedback. Physica D, 136:193–204, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Femat, J. Alvarez-Ramirez, and M. Rosales-Torres. Robust asymptotic linearization via uncertainty estimation: Regulation of temperature in a fluidized bed reactor. Cormput. Chem. Eng., 23:697–708, 1999.

    Article  Google Scholar 

  22. R. Femat, J. Capistran-Tobias, and G. Solis-Perales. Laplace domain controllers for chaos control. Phys. Lett. A, 252(1-2):27–36, 1999.

    Article  Google Scholar 

  23. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  24. E. Guyon, J.P. Nadal, and Y. Pomeau. Disorder and Mixing. Kluwer Academic Publishers, Netherlands, 1987.

    Google Scholar 

  25. A.H. Hadid. Chaotic flow in rotating lid cavities. Phys. Fluid. A, 5(8):1939–1946, 1993.

    Article  MATH  Google Scholar 

  26. F.P. Incropera and D.P. DeWitt. Fundamentals of Heat and Mass Transfer. Wiley and Sons, USA, 1990.

    Google Scholar 

  27. H. Lamba and C.J. Budd. Scaling of lyapunov exponents at nonsmooth bifurcations. Phys. Rev. E, 50(1):84–90, 1994.

    Article  MathSciNet  Google Scholar 

  28. J. Lee and W.F. Ramirez. Mathematical modeling of induced foreing protein production by recombinant bacteria. Biotechnol. Bioeng., 39:635-, 1992.

    Article  Google Scholar 

  29. T.J. Lin, J. Reese, T. Hong, and L.S. Fan. Quantitative analysis and computation of two-dimensional bubble columns. A.I.Ch.E. Journal, 42(2):301–318, 1996.

    Google Scholar 

  30. W.L. Luyben. Process Modeling, Simulation and Control for Chemical Engineering. McGraw-Hill, New York, 2nd. edition, 1990.

    Google Scholar 

  31. P. Martien, S.C. Pope, and R.S. Shaw. The chaotic behavior of the leaky faucet. Phys. Lett. A, 110(7-8):399–404, 1985.

    Article  Google Scholar 

  32. H.O. Méndez-Acosta. Control Robusto de la Digestion Anaerobia en el Tratamiento de Aguas Residuales de la Industria Vitivinícola (in Spanish). PhD thesis, Universidad de Guadalajara, Mexico, 2004.

    Google Scholar 

  33. H.O. Méndez-Acosta, D.U. Campos-Delgado, R. Femat, and V. Gonzalez-Álvarez. A robust feedforward/feedback control for an anaerobic digester. Cornput. Chem. Eng., 31:1–11, 2005.

    Google Scholar 

  34. H.O. Méndez-Acosta, R. Femat, and D.U. Campos-Delgado. Improving the performance on the COD regulation in anaerobic digestion. Ind. Eng. Chem. Res., 43(1):95–104, 2004.

    Article  Google Scholar 

  35. O. Monroy, J. Álvarez Ramírez, F. Cuervo, and R. Femat. An adaptive strategy to control anaerobic digesters for wastewater treatment. Ind. Eng. Chem. Res., 35(10):3442–3446, 1996.

    Article  Google Scholar 

  36. J. Nielsen and J. Villadsen. Bioreaction Engineering Principles. Plenum Press, New York, 1994.

    Google Scholar 

  37. K. Otawara and L.T. Fan. Increasing the yield from a chemical reactor with spontaneously oscillatory chemical reactions by a nonlinear feedback mechanism. Comput. Chem. Eng., 25:333–335, 2001.

    Article  Google Scholar 

  38. U. Parlitz. Identification of true and spurious Lyapunov exponents from time series. Int. J. Bifur. and Chaos, 2(1):155–165, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Pérez and P. Albertos. Self-oscillating and chaotic behaviour of a PI-controlled CSTR with control valve saturation. J. Process Control, 14:51–57, 2004.

    Article  Google Scholar 

  40. M. Ratto. A theoretical approach to the analysis of Pi-controlled CSTRs with noise. Comput. Chem. Eng., 22(11):1581–1593, 1998.

    Article  Google Scholar 

  41. R.G. Rice, D.T. Barbe, and N.W. Geary. Correlation of nonverticality and entrance effects in bubble columns. A.I.Ch.E. Journal, 36(9):1421–1424, 1990.

    Google Scholar 

  42. H.G. Schuster. Deterministic Chaos. VCH Publishers, 1993.

    Google Scholar 

  43. A. Soria. Kinematics Waves and Governing Equations in Bubble Columns and Three Phase Fluidized Beds. PhD thesis, University Western Ontario, Canada, 1991.

    Google Scholar 

  44. J.I. Steinfeld, J.S. Francisco, and W.L. Hase. Chemical Kinetics and Dynamics. Prentice-Hall, USA, 1989.

    Google Scholar 

  45. D.J. Tritton and C. Edgell. Chaotic bubbling. Phys. Fluid. A, 5(2):500–502, 1993.

    Article  Google Scholar 

  46. A. Tufaile and J.C. Sartorelli. Chaotic behavior in bubble formation dynamics. Physica A, 275(3-4):336–346, 2000.

    Article  MathSciNet  Google Scholar 

  47. A. Tufaile and J.C. Sartorelli. Bubble and spherical air shell formation dynamics. Phys. Rev. E, 66(5):056204, 2002.

    Article  Google Scholar 

  48. J.W. Tzeng, R.C. Chen, and L.S. Fan. Visualization of flow characteristics in a 2-D bubble column and three-phase fluidized bed. A.I.Ch.E. Journal, 39(5):733–744, 1993.

    Google Scholar 

  49. V.K. Vanag, L.F. Yang, M. Dolnik, A.M. Zhabotinsky, and I.R. Epstein. Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature, 406(6794):389–391, 2000.

    Article  Google Scholar 

  50. A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano. Determining lyapunov exponents from a time series. Physica D, 16(3):285–317, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  51. D. Zardi and G. Seminara. Chaotic mode competition in the shape oscillations of pulsating bubbles. J. Fluid Mech., 286:257–276, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Zavala-Rio, R. Femat, and G. Solis-Perales. Countercurrent double-pipe heat exchangers are a special type of positive systems. In First Multidisciplinary International Symposium on Positive Systems: Theory and Applications (POSTA 2003), volume IEEE LNCIS 294, pages 385–392, Roma, Italy, August 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Femat, R., Méndez-Acosta, H.O., Álvarez-Ramírez, J. (2007). Oscillations in Controlled Processes: Two Experimental Study Cases. In: Oscar Méndez-Acosta, H., Femat, R., González-Álvarez, V. (eds) Selected Topics in Dynamics and Control of Chemical and Biological Processes. Lecture Notes in Control and Information Sciences, vol 361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73188-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73188-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73187-0

  • Online ISBN: 978-3-540-73188-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics