Skip to main content

Synchronization Dynamics in Complex Networks

  • Chapter
Lectures in Supercomputational Neurosciences

Part of the book series: Understanding Complex Systems ((UCS))

  • 1068 Accesses

Summary

Previous chapters have discussed tools from graph theory and their contribution to our understanding of the structural organization of mammalian brains and its functional implications. The brain functions are mediated by complicated dynamical processes which arise from the underlying complex neural networks, and synchronization has been proposed as an important mechanism for neural information processing. In this chapter, we discuss synchronization dynamics on complex networks. We first present a general theory and tools to characterize the relationship of some structural measures of networks to their synchronizability (the ability of the networks to achieve complete synchronization) and to the organization of effective synchronization patterns on the networks. Then, we study synchronization in a realistic network of cat cortical connectivity by modeling the nodes (which are cortical areas composed of large ensembles of neurons) by a neural mass model or a subnetwork of interacting neurons. We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns can be understood by the general principles discussed in the first part of the chapter. With weak couplings, the model with subnetworks displays biologically plausible dynamics and the synchronization pattern reveals a hierarchically clustered organization in the network structure. Thus, the study of synchronization of complex networks can provide insights into the relationship between network topology and functional organization of complex brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., reviews: S. H. Strogatz, Nature (London) 410, 268 (2001); R. Albert and A.-L. Barab’asi, Rev. Mod. Phys. 74, 47 (2002); S. Boccaletti et al., Phys. Rep. 424, 175 (2006).

    Google Scholar 

  2. D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).

    Article  ADS  Google Scholar 

  3. A.-L. Barabàsi and R. Albert, Science 286, 509 (1999).

    Article  MathSciNet  Google Scholar 

  4. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chlkovskii and U. Alon, Science 298, 824 (2002).

    Article  ADS  Google Scholar 

  5. A partial list, e.g., P. M. Gade and C. K. Hu, Phys. Rev. E 62, 6409 (2000); J. Jost and M. P. Joy, Phys. Rev. E 65, 016201 (2001); M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002); A. E. Motter, C. S.Zhou and J. Kurths, Europhys. Lett. 69, 334 (2005); Phys. Rev. E 71, 016116 (2005); L. Donetti, P. I. Hurtado and M. A. Munoz, Phys. Rev. Lett. 95, 188701 (2005); A. Arenas, A. Di’az-Guilera and C. J. Per’ez-Vicentz, Phys. Rev. Lett. 96, 114102 (2006).

    Google Scholar 

  6. E. Salinas and T. J. Sejnowski, Nature Neurosci. 2, 539 (2001); P. Fri’es, Trends Cogn. Sci. 9, 474 (2005); A. Schnitzler and J. Gross, Nature Neurosci. 6, 285 (2005).

    Article  Google Scholar 

  7. L. F. Lago-Fern’andez, R. Huerta, F. Corbacho and J. A. Sigüenza, Phys. Rev. Lett. 84, 2758 (2000).

    Article  ADS  Google Scholar 

  8. N. Masuda and K. Aihara, Biol. Cybern. 90, 302 (2004).

    Article  MATH  Google Scholar 

  9. X. Guardiola, A. Diaz-Guilera, M. Llas and C. J. Per’ez, Phys. Rev. E 62, 5565 (2000).

    Article  ADS  Google Scholar 

  10. M. Timme, F. Wolf and yT. Geisel, Phys. Rev. Lett. 92, 074101 (2004); M. Denker, M. Timme, M. Diesmann, F. Wolf and T. Geisel, Phys. Rev. Lett. 92, 074103 (2004); V. N Belykh, E. de Lange and M. Hasler, Phys. Rev. Lett. 94, 188101 (2005).

    Article  ADS  Google Scholar 

  11. H. Hong, M. Y. Choi and B. J. Kim, Phys. Rev. E 65, 026139 (2002).

    Article  ADS  Google Scholar 

  12. A. M. Batista, S. E. D. Pinto, R. L. Viana and S. R. Lopes, Physica A 322, 118 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. T. Nishikawa, A. E. Motter, Y.-C. Lai and F. C. Hoppensteadt, Phys. Rev. Lett. 91, 014101 (2003).

    Article  ADS  Google Scholar 

  14. F. Chung and L. Lu, Proc. Natl. Acad. Sci. U.S.A. 99, 15879 (2002); R. Cohen and S. Havlin, Phys. Rev. Lett. 90, 058701 (2003).

    Google Scholar 

  15. J. W. Scannell, G. A. P. C. Burns, C. C. Hilgetag, M. A. O’eil and M. P. Yong, Cereb. Cortex 9, 277 (1999).

    Article  Google Scholar 

  16. B. T. Grenfell, O. N. Bjornstad and J. Kappey, Nature (London) 414, 716 (2001).

    Article  ADS  Google Scholar 

  17. G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai and P. A. Rikvold, Science 299, 677 (2003).

    Article  ADS  Google Scholar 

  18. A. Barrat, M. Barth’elemy, R. Pastor-Satorras and A. Vespignani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).

    Article  ADS  Google Scholar 

  19. A. E. Motter, C. S. Zhou and J. Kurths, Europhys. Lett. 69, 334 (2005); Phys. Rev. E 71, 016116 (2005).

    Article  ADS  Google Scholar 

  20. M. Chavez, D.-U. Hwang, A. Amann, H. G. E. Hentschel and S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005).

    Article  ADS  Google Scholar 

  21. C. S. Zhou, A.E. Motter and J. Kurths, Phys. Rev. Lett. 96, 034101 (2006).

    Article  ADS  Google Scholar 

  22. C. S. Zhou and J. Kurths, Phys. Rev. Lett. 96, 164102 (2006).

    Article  ADS  Google Scholar 

  23. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).

    Article  ADS  Google Scholar 

  24. L. M. Pecora and M. Barahona, Chaos and Complexity Lett. 1, 61 (2005).

    MATH  Google Scholar 

  25. F. Chung, L. Lu and V. Vu, Proc. Natl. Acad. Sci. U.S.A. 100, 6313 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. X. F. Wang, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 885 (2002).

    Article  MATH  Google Scholar 

  27. J. Jost and M. P. Joy, Phys. Rev. E 65, 016201 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Jalan and R. E. Amritkar, Phys. Rev. Lett. 90, 014101 (2003).

    Article  ADS  Google Scholar 

  29. S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000).

    Article  ADS  Google Scholar 

  30. M. E. J. Newman, S. H. Strogatz and D. J. Watts, Phys. Rev. E 64, 026118 (2001).

    Article  ADS  Google Scholar 

  31. C. S. Zhou and J. Kurths, Chaos 16, 015104 (2006).

    Google Scholar 

  32. M. Rosenblum, A. Pikovsky and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).

    Article  ADS  Google Scholar 

  33. A. S. Pikovsky, M. Rosenblum and J. Kurths, Synchronization – A universal concept in nonlinear sciences, Cambridge University Press, 2001; S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C.S. Zhou, The Synchronization of Chaotic Systems, Phys. Rep. 366, 1–101 (2002).

    Google Scholar 

  34. M. E. J. Newman, C. Moore and D. J. Watts, Phys. Rev. Lett. 84, 3201 (2000).

    Article  ADS  Google Scholar 

  35. G. V. Osipov, J. Kurths and C. S. Zhou, Synchronization in Oscillatory Networks, Spring, Berlin, 2007.

    Book  MATH  Google Scholar 

  36. C. J. Stam and E. A. de Bruin, Hum. Brain Mapp. 22, 97 (2004).

    Article  Google Scholar 

  37. See a recent review: O. Sporns, D. R. Chialvo, M. Kaiser and C. C. Hilgetag, Trends Cogn. Sci. 8, 418 (2004).

    Google Scholar 

  38. C. J. Stam, Neurosci. Lett. 355, 25 (2004); V. M. Egu’iluz, D. R. Chialvo, G. Cecchi, M. Baliki, and A. V. Apkarian, Phys. Rev. Lett. 94, 018102 (2005); R. Salvador et al., Cereb. Cortex 15, 1332 (2005).

    Article  Google Scholar 

  39. O. Sporns and J. D. Zwi, Neuroinformatics 2, 145 (2004).

    Article  Google Scholar 

  40. C. C. Hilgetag and M. Kaiser, Neuroinformatics 2, 353 (2004).

    Article  Google Scholar 

  41. C. C. Hilgetag, G. A. Burns, M. A. O’Neill, J. W. Scannell and M. P. Young, Phil. Trans. R. Soc. Lond. B. 355, 91 (2000).

    Article  Google Scholar 

  42. M. E. J. Newman and M. Girvan, Phys. Rev. E. 69, 026113 (2004).

    Article  ADS  Google Scholar 

  43. F. H. Lopes da Silva, A. Hoeks, H. Smits and L. H. Zetterberg, Kybernetik 15, 27 (1974).

    Article  Google Scholar 

  44. F. Wendling, J. J. Bellanger, F. Bartolomei and P. Chauvel, Biol. Cybern. 83, 367 (2000).

    Article  Google Scholar 

  45. C. S. Zhou, L. Zemanov’a, G. Zamora, C. C. Hilgetag and J. Kurths, Phys. Rev. Lett. 97, 238103 (2006).

    Article  ADS  Google Scholar 

  46. L. Zemanov’a, C. S. Zhou, J. Kurths, Physica D 224, 202 (2006).

    Article  ADS  Google Scholar 

  47. G. Buzsaki, C. Geisler, D. A. Henze and X. J. Wang, Trends Neurosci. 27, 186 (2004).

    Article  Google Scholar 

  48. M. P. Young, Spat. Vis. 13, 137 (2000).

    Article  Google Scholar 

  49. R. FitzHugh, Biophys. J. 1, 445 (1961).

    Article  Google Scholar 

  50. E. Niedermeyer and F. Lopes da Silva, Electroencephalography: Basic principles, clinical applications, and related fields, Williams & Wilkins, 1993; R. Kandel, J. H., Schwartz, and T. M. Jessell, Principles of Neural Science, McGraw-Hill, 2000.

    Google Scholar 

  51. P. Kudela, P. J. Franaszczuk and G. K. Bergey, Biol. Cybern. 88, 276 (2003).

    Article  MATH  Google Scholar 

  52. A. Morrison, C. Mehring, T. Geisel, A. Aertsen and M. Diesmann, Neural Comput. 17, 1776 (2005).

    Article  MATH  Google Scholar 

  53. R. Kütter and F. T. Sommer, Phil. Trans. R. Soc. Lond. B 355, 127 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, C., Zemanová, L., Kurths, J. (2007). Synchronization Dynamics in Complex Networks. In: Graben, P.b., Zhou, C., Thiel, M., Kurths, J. (eds) Lectures in Supercomputational Neurosciences. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73159-7_5

Download citation

Publish with us

Policies and ethics