Skip to main content

Musculo-Skeletal Interventions

  • Chapter
  • 1044 Accesses

Abstract

Osteoid osteoma is a benign bone tumor which was first described by Jaffe (1935). Histologically it consists of a centrally located nidus composed of osteoblasts and osteoid which is surrounded by an area of reactive sclerosis and/or periosteal new bone formation. Prostaglandins which are produced by the tumor induce a chronic inflammatory reaction and vasodilatation which results in stimulation of unmyelinated nerve endings in the nidus causing pain. This leads to the clinical symptoms of this lesion with local pain often worsening during the night, which is typically relieved by aspirin or other related nonsteroidal antiinflammatory drugs. Osteoid osteomas occurmore frequently in men than in women (2:1) and most patients, approximately 75%, suffering from osteoid osteomas are between 5 and 25 years old. Most commonly osteoid osteomas are found in the diaphysis of femur and tibia followed by humerus, radius, ulna, hand, and the verterbral spine. A malignant transformation of osteoid osteoma is not known.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 15.1

  • Adam G, Keulers P, Vorwerk D et al. (1995) The percutaneous CT-guided treatment of osteoid osteomas: a combined procedure with a biopsy drill and subsequent ethanol injection. RoFo 162:232–235

    PubMed  CAS  Google Scholar 

  • Aschoff AJ, Merkle EM, Emancipator SN et al. (2002) Femur: MR imaging-guided radiofrequency-ablation in a porcine model – feasibility study. Radiology 225:471–478

    Article  PubMed  Google Scholar 

  • Barei DP, Moreau G, Scarborough MT et al. (2000) Percutaneous radiofrequency ablation of osteoid osteoma. Clin Orthop Relat Res 373:115–124

    Article  PubMed  Google Scholar 

  • Cantwell CP, Obyrne J, Eustace S (2004) Current trends in treatment of osteoid osteoma with an emphasis on radiofrequency ablation. Eur Radiol 14:607–617

    Article  PubMed  Google Scholar 

  • Cantwell CP, O’Byrne J, Eustace S (2006) Radiofrequency ablation of osteoid osteoma with cooled probes and impedance-control energy delivery. AJR Am J Roentgenol 186 (Suppl 5):S244–248

    Article  PubMed  Google Scholar 

  • Cioni R, Armilotta N, Bargellini I et al. (2004) CT-guided radiofrequency ablation of osteoid osteoma: long-term results. Eur Radiol 14:1203–1208

    Article  PubMed  Google Scholar 

  • Davies M (2002) The diagnostic accuracy of MR imaging in osteoid osteoma. Skeletal Radiol 31:559–569

    Article  PubMed  Google Scholar 

  • Donkol RH, Al-Nammi A, Moghazi K (2007) Efficacy of percutaneous radiofrequency ablation of osteoid osteoma in children. Pediatr Radiol Nov 27; [Epub ahead of print]

    Google Scholar 

  • Gangi A, Alizadeh H, Wong L et al. (2007) Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 242:293–301

    Article  PubMed  Google Scholar 

  • Gebauer B, Tunn PU, Gaffke G et al. (2006) Osteoid osteoma: experience with laser- and radiofrequency-induced ablation. Cardiovsc Intervent Radiol 29:210–215

    Article  Google Scholar 

  • Ghanem I, Collet LM, Kharrat K et al. (2003) Percutaneous radiofrequency coagulation of osteoid osteoma in children and adolescents. J Pediatr Orthop B 12:244–252

    Article  PubMed  Google Scholar 

  • Jaffe HL (1935) “Osteoid osteoma”, a benign osteoblastic tumor composed of osteoid and atypical bone. Arch Surg 31:709–728

    Google Scholar 

  • Kjar RA, Powell GJ, Schilcht SM et al. (2006) Percutaneous radiofrequency ablation for osteoid osteoma: experience with a new treatment. Med J Aust 184:563–565

    PubMed  Google Scholar 

  • Lindner NJ, Scarborough M, Ciccarelli JM et al. (1997) CT-controlled thermocoagulation of osteoid osteoma in comparison with traditional methods. Z Orthop Ihre Grenzgeb 135:522–527

    PubMed  CAS  Google Scholar 

  • Lindner NJ, Ozaki T, Roedl R et al. (2001) Percutaneous radiofrequency ablation in osteoid osteoma.J Bone Joint Surg Br 83:391–396

    Article  PubMed  CAS  Google Scholar 

  • Mahnken AH, Tacke JA, Wildberger JE et al. (2006) Radiofrequency ablation of osteoid osteoma: initial results with a bipolar ablation device. J Vasc Interv Radiol 17:1465–1470

    Article  PubMed  Google Scholar 

  • Marcove RC, Heelan RT, Huvos AG et al. (1991) Osteoid osteoma. Diagnosis, localization, and treatment. Clin Orthop Relat Res 267:197–201

    PubMed  Google Scholar 

  • Martel J, Bueno A, Ortiz E (2005) Percutaneous radiofrequency treatment of osteoid osteoma using cool-tip electrodes. Eur J Radiol 56:403–408

    Article  PubMed  Google Scholar 

  • Mastrantuono D, Martorano D, Verna V et al. (2005) Osteoid osteoma: our experience using radio-frequency (RF) treatment. Radiol Med (Torino) 109:220–228

    Google Scholar 

  • Peyser A, Applbaum Y, Khoury A et al. (2007) Osteoid osteoma: CT-guided radiofrequency ablation using a water-cooled probe. Ann Surg Oncol 14:591–596

    Article  PubMed  CAS  Google Scholar 

  • Pinto CH, Taminiau AHM, Vanderschueren GM et al. (2002) Technical considerations in CT-guided radiofrequency thermal ablation of osteoid osteoma: tricks of the trade. AJR Am J Roentgenol 179:1633–1642

    PubMed  Google Scholar 

  • Rimondi E, Bianchi G, Malaguti MC et al. (2005) Radiofrequency thermoablation of primary non-spinal osteoid osteoma: optimization of the procedure. Eur Radiol 15:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal DI, Alexander A, Rosenberg AE et al. (1992) Ablation of osteoid osteomas with percutaneously placed electrode: a new procedure. Radiology 183:29–33

    PubMed  CAS  Google Scholar 

  • Rosenthal DI, Hornicek FJ, Wolfe MW et al. (1998) Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am 80:815–821

    PubMed  CAS  Google Scholar 

  • Rosenthal D, Hornicek FJ, Torriani M et al. (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175

    Article  PubMed  Google Scholar 

  • Sans N, Galy-Fourcade D, Assoun J et al. (1999) Osteoid osteoma: CT-guided percutaneous resection and follow up in 38 patients. Radiology 212:687–692

    PubMed  CAS  Google Scholar 

  • Sequeiros RB, Hyvonen P, Sequeiros AB et al. (2003) MR imaging guided laser ablation of osteoid osteomas with use of optical instrument guidance at 0.23 T. Eur Radiol 13(10):2309–2314

    Article  PubMed  Google Scholar 

  • Skjedal S, Lilleås F, Follerås G et al. (2000) Real-time MRI-guided excision and cry-treatment of osteoid osteoma in os ischii: a case report. Acta Orthop Scand 71:637–638

    Article  Google Scholar 

  • Soong M, Jupiter J, Rosenthal D (2006) Radiofrequency ablation of osteoid osteoma in the upper extremity. J Hand Surg Am 31:279–283

    Article  PubMed  Google Scholar 

  • Vanderschueren GM, Taminiau AHM, Obermann WR et al. (2002) Osteoid osteoma: clinical results with thermocoagulation. Radiology 224:82–86

    Article  PubMed  Google Scholar 

  • Vanderschueren GM, Taminiau AH, Obermann WR et al. (2004) Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology 233:757–762

    Article  PubMed  Google Scholar 

  • Venbrux AC, Montague BJ, Murphy KPJ et al. (2003) Image-guided percutaneous radiofrequency ablation for osteoid osteomas. J Vasc Interv Radiol 14:375–380

    PubMed  Google Scholar 

  • Witt JD, Hall-Craggs MA, Ripley P et al. (2000) Interstitial laser photocoagulation for the treatment of osteoid osteoma. J Bone Joint Surg Br 82:1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Woertler K, Vestring T, Boettner F et al. (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12:717–722

    Article  PubMed  CAS  Google Scholar 

  • Yip PS, Lam YL, Chan MK et al. (2006) Computed tomography-guided percutaneous radiofrequency ablation of osteoid osteoma: local experience. Hong Kong Med J 12:305–309

    PubMed  CAS  Google Scholar 

Section 15.2

  • Barragan-Campos HM, Vallee JN, Lo D et al. (2006) Percutaneous vertebroplasty for spinal metastases: complications. Radiology 238:354–362

    Article  PubMed  Google Scholar 

  • Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 36:533–546

    Article  PubMed  CAS  Google Scholar 

  • Galibert P, Deramond H, Rosat P, Le Gars D (1987) Note préliminaire sur le traitement des angiomes vertébraux par vertébroplastie acrylique percutanée. Neurochirurgie 33:166–168

    PubMed  CAS  Google Scholar 

  • Gangi A, Kastler BA, Dietemann JL (1994) Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. Am J Neuroradiol 15:83–86

    PubMed  CAS  Google Scholar 

  • Georgy BA, Wong W (2007) Plasma-mediated radiofrequency ablation assisted percutaneous cement injection for treating advanced malignant vertebral compression fractures. Am J Neuroradiol 28:700–705

    PubMed  CAS  Google Scholar 

  • Grönemeyer DH, Schirp S, Gevargez A (2002) Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode. Cancer J 8:33–39

    PubMed  Google Scholar 

  • Helmberger T, Bohndorf K, Hierholzer J, Noldge G, Vorwerk D (2003) Guidelines of the German Radiological Society for percutaneous vertebroplasty. Radiologe 43:703–708 [German]

    Article  PubMed  CAS  Google Scholar 

  • Hodek-Wuerz R, Martin JB, Wilhelm K, Lovblad KO, Babic D, Rufenacht DA, Wetzel SG (2006) Percutaneous vertebroplasty: preliminary experiences with rotational acquisitions and 3D reconstructions for therapy control. Cardiovasc Intervent Radiol 29:862–865

    Article  PubMed  Google Scholar 

  • Huegli RW, Schaeren S, Jacob AL, Martin JB, Wetzel SG (2005) Percutaneous cervical vertebroplasty in a multifunctional image-guided therapy suite: hybrid lateral approach to C1 and C4 under CT and fluoroscopic guidance. Cardiovasc Intervent Radiol 28:649–452

    Article  PubMed  CAS  Google Scholar 

  • Kelekis AD, Martin JB (2005) Radicular pain after vertebroplasty: complication and prevention. Skeletal Radiol 34:816

    Article  PubMed  Google Scholar 

  • Koh YH, Han D, Cha JH, Seong CK, Kim J, Choi YH (2007) Vertebroplasty: magnetic resonance findings related to cement leakage risk. Acta Radiol 48:315–320

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Lee CH, Chen SH, Lui CC (2007) Unusual presentation of infected vertebroplasty with delayed cement dislodgment in an immunocompromised patient: case report and review of literature. Cardiovasc Intervent Radiol. Dec 13 [Epub ahead of print]

    Google Scholar 

  • Martin JB, Gailloud P, Dietrich PY, Luciani ME, Somon T, Sappino PA, Rüfenach DA (2002) Direct transoral approach to C2 for percutaneous vertebroplasty. Cardiovasc Intervent Radiol 25:517–519

    Article  PubMed  Google Scholar 

  • Mathis JM (2006) Percutaneous vertebroplasty: procedure technique. In: Mathis JM, Deramond H, Belkoff ST (eds) Percutaneous vertebroplasty and kyphoplasty, 2nd edn. Spinger, Berlin Heidelberg New York

    Google Scholar 

  • McGraw JK, Cardella J, Barr JD et al. (2003) Society of interventional radiology quality improvement guidelines for percutaneous vertebroplasty. J Vasc Interv Radiol 14:S311–315

    Article  PubMed  Google Scholar 

  • Söyüncü Y, Ozdemir H, Söyüncü S, Bigat Z, Gür S (2006) Posterior spinal epidural abscess: an unusual complication of vertebroplasty. Joint Bone Spine 73:753–755

    Article  PubMed  Google Scholar 

  • Tanigawa N, Komemushi A, Kariya S, Kojima H, Shomura Y, Ikeda K, Omura N, Murakami T, Sawada S (2006) Percutaneous vertebroplasty: relationship between vertebral body bone marrow edema pattern on MR images and initial clinical response. Radiology 239:195–200

    Article  PubMed  Google Scholar 

  • Toyota N, Naito A, Kakizawa H, Hieda M, Hirai N, Tachikake T, Kimura T, Fukuda H, Ito K (2005) Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol 28:578–583

    Article  PubMed  Google Scholar 

  • Voormolen MH, van Rooij WJ, Sluzewski M, van der Graaf Y, Lampmann LE, Lohle PN, Juttmann JR (2006) Pain response in the first trimester after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures with or without bone marrow edema. Am J Neuroradiol 27:1579–1585

    PubMed  CAS  Google Scholar 

  • Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E (1996) Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 199:241–247

    PubMed  CAS  Google Scholar 

  • Weill A, Kobaiter H, Chiras J (1998) Acetabulum malignacies: technique and impact on pain of percutaneous injection of acrylic surgical cement. Eur Radiol 8:123–129

    Article  PubMed  CAS  Google Scholar 

  • Wetzel SG, Wilhelm KE (2006) Perkutane Vertebroplastie und Kyphoplastie. Radiol Up2Date 3:255–272

    Article  Google Scholar 

  • Wetzel SG, Martin JB, Somon T, Wilhelm K, Rufenacht DA (2002) Painful osteolytic metastasis of the atlas: treatment with percutaneous vertebroplasty. Spine 27:E493–495

    Article  PubMed  Google Scholar 

  • Wilhelm K, Babic D (2006) 3D angiography in the interventional clinical routine. Med Mundi 12:24–31

    Google Scholar 

Section 15.3

  • Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 422:201–207

    Article  PubMed  Google Scholar 

  • Ben-Menachem Y, Coldwell DM, Young JW, Burgess AR (1991) Hemorrhage associated with pelvic fractures: causes, diagnosis, and emergent management. AJR Am J Roentgenol 157:1005–1014

    PubMed  CAS  Google Scholar 

  • Bosch EW van den, Zwienen CM van, Vugt AB van (2002) Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma 53:44–48

    Google Scholar 

  • Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invas Ther Allied Technol 15:101–113

    Article  Google Scholar 

  • Ebraheim NA, Biyani A (2003) Percutaneous computed tomographic stabilization of the pathologic sacroiliac joint. Clinical Orthop Relat Res 252–255

    Google Scholar 

  • Ebraheim NA, Rusin JJ, Coombs RJ, Jackson WT, Holiday B (1987) Percutaneous computed-tomography-stabilization of pelvic fractures: preliminary report. J Orthop Trauma 1:197–204

    Article  PubMed  CAS  Google Scholar 

  • Falchi M, Rollandi GA (2004) CT of pelvic fractures. Eur J Radiol 50:96–105

    Article  PubMed  Google Scholar 

  • Gansslen A, Pohlemann T, Paul C, Lobenhoffer P, Tscherne H (1996) Epidemiology of pelvic ring injuries. Injury 27(Suppl 1):S-A13–20

    Google Scholar 

  • Gansslen A, Hufner T, Krettek C (2006) Percutaneous iliosacral screw fixation of unstable pelvic injuries by conventional fluoroscopy. Oper Orthop Traumatol 18:225–244

    Article  PubMed  Google Scholar 

  • Gay SB, Sistrom C, Wang GJ, Kahler DA, Boman T, McHugh N, Goitz HT (1992) Percutaneous screw fixation of acetabular fractures with CT guidance: preliminary results of a new technique. AJR Am J Roentgenol 158:819–822

    PubMed  CAS  Google Scholar 

  • Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A (1995) Neurosurgical robot Minerva: first results and current developments. J Image Guided Surg 1:266–272

    Article  CAS  Google Scholar 

  • Gross T, Jacob AL, Messmer P, Regazzoni P, Steinbrich W, Huegli RW (2004) Transverse acetabular fracture: hybrid minimal access and percutaneous CT navigated fixation. AJR Am J Roentgenol 183:1000–1002

    PubMed  Google Scholar 

  • Grützner PA, Rose E, Vock B, Holz F, Nolte LP, Wentzensen A (2002). Computerassisted screw osteosynthesis of the posterior pelvic ring. Initial experiences with an image reconstruction based optoelectronic navigation system. Unfallchirurgie 105:254–260 [German]

    Article  Google Scholar 

  • Guillamondegui OD, Pryor JP, Gracias VH, Gupta R, Reilly PM, Schwab CW (2002) Pelvic radiography in blunt trauma resuscitation: a diminishing role. J Trauma 53:1043–1047

    PubMed  Google Scholar 

  • Huegli RW, Messmer P, Jacob AL, Regazzoni P, Styger S, Gross T (2003) Delayed union of a sacral fracture: percutaneous navigated autologous cancellous bone grafting and screw fixation. Cardiovasc Intervent Radiol 26:502–505

    Article  PubMed  CAS  Google Scholar 

  • Hunter JC, Brandser EA, Tran KA (1997) Pelvic and acetabular trauma. Radiol Clin North Am 35:559–590

    PubMed  CAS  Google Scholar 

  • Isler B, Ganz R (1996) Classification of pelvic ring injuries. Injury 27(Suppl 1):S-A3–12

    Google Scholar 

  • Jacob AL, Messmer P, Stock KW, Suhm N, Baumann B, Regazzoni P, Steinbrich W (1997) Posterior pelvic ring fractures: closed reduction and percutaneous CT guided sacroiliac screw fixation. Cardiovasc Intervent Radiol 20:285–294

    Article  PubMed  CAS  Google Scholar 

  • Jacob AL, Suhm N, Kaim A, Regazzoni P, Steinbrich W, Messmer P (2000a). Coronal acetabular fractures: the anterior approach in computed tomography-navigated minimally invasive percutaneous fixation. Cardiovasc Intervent Radiol 23:327–331

    Article  CAS  Google Scholar 

  • Jacob AL, Kaim A, Baumann B, Suhm N, Messmer P (2000b) A simple device for continuous leg extension during CT-guided interventions. 174:1687–1688

    Google Scholar 

  • Jacob AL, Regazzoni P, Steinbrich W, Messmer P (2000c) The multifunctional therapy room of the future: image guidance, interdisciplinarity, integration and impact on patient pathways. Eur Radiol 10:1763–1769

    Article  CAS  Google Scholar 

  • Judet R, Judet J, Letournel E (1964) Fracture of the acetabulum: classification and surgical approaches for open reduction. Preliminary report. J Bone Joint Surg 46:1615–1646

    PubMed  CAS  Google Scholar 

  • Keating JF, Werier J, Blachut P, Broekhuyse H, Meek RN, O’Brien PJ (1999) Early fixation of the vertically unstable pelvis: the role of iliosacral screw fixation of the posterior lesion. J Orthop Trauma 13:107–113

    Article  PubMed  CAS  Google Scholar 

  • Kellam JF (1989) The role of external fixation in pelvic disruptions. Clin Orthop Relat Res 66–82

    Google Scholar 

  • Kellam JF, McMurtry RY, Paley D, Tile M (1987) The unstable pelvic fracture. Operative treatment. Orthop Clin North Am 18:25–41

    PubMed  CAS  Google Scholar 

  • Letournel E (1993) The treatment of acetabular fractures through the ilioinguinal approach. Clin Orthop Relat Res 62–76

    Google Scholar 

  • Matta JM, Saucedo T (1989) Internal fixation of pelvic ring fractures. Clin Orthop Relat Res 83–97

    Google Scholar 

  • Moed BR, Ahmad BK, Craig JG, Jacobson GP, Anders MJ (1998) Intraoperative monitoring with stimulus-evoked electromyography during placement of iliosacral screws. An initial clinical study. J Bone Joint Surg 80:537–546

    PubMed  CAS  Google Scholar 

  • Müller ME, Perren SM, Allgöwer M (1991) Manual of internal fixation: techniques recommended by the AO-ASIF Group, 3rd edn, expanded and completely revised. Arbeitsgemeinschaft für Osteosynthesefragen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nelson DW, Duwelius PJ (1991) CT-guided fixation of sacral fractures and sacroiliac joint disruptions. Radiology 180:527–532

    PubMed  CAS  Google Scholar 

  • Peng KT, Huang KC, Chen MC, Li YY, Hsu RW (2006) Percutaneous placement of iliosacral screws for unstable pelvic ring injuries: comparison between one and two C-arm fluoroscopic techniques. Trauma 60:602–608

    Article  Google Scholar 

  • Pohlemann T, Angst M, Schneider E, Ganz R, Tscherne H (1993) Fixation of transforaminal sacrum fractures: a biomechanical study. J Orthop Trauma 7:107–117

    Article  PubMed  CAS  Google Scholar 

  • Pohlemann T, Bosch U, Gansslen A, Tscherne H (1994) The Hannover experience in management of pelvic fractures. Clin Orthop Relat Res 305:69–80

    Article  PubMed  Google Scholar 

  • Poole GV, Ward EF (1994) Causes of mortality in patients with pelvic fractures. Orthopedics 17:691–696

    PubMed  CAS  Google Scholar 

  • Qureshi AA, Archdeacon MT, Jenkins MA, Infante A, DiPasquale T, Bolhofner BR (2004) Infrapectineal plating for acetabular fractures: a technical adjunct to internal fixation. J Orthop Trauma 18:175–178

    Article  PubMed  Google Scholar 

  • Routt ML Jr, Kregor PJ, Simonian PT, Mayo K (1995a) Early results of percutaneous iliosacral screws placed with the patient in the supine position. J Orthop Trauma 9:207–214

    Article  Google Scholar 

  • Routt ML Jr, Simonian PT, Grujic L (1995b) The retrograde medullary superior pubic ramus screw for the treatment of anterior pelvic ring disruptions: a new technique. J Orthop Trauma 9:35–44

    Article  Google Scholar 

  • Schrader P (2005) Technique evaluation for orthopedic use of Robodoc. Z Orthop Ihre Grenzgeb 143:329–336

    Article  PubMed  CAS  Google Scholar 

  • Senst W, Bida B (2000) Expert assessment of pelvic injuries. Zentralbl Chirurg 125:737–743

    Article  CAS  Google Scholar 

  • Siebert W, Mai S, Kober R, Heeckt PF (2002) Technique and first clinical results of robot-assisted total knee replacement. Knee 9:173–180

    Article  PubMed  Google Scholar 

  • Simonian PT, Routt ML Jr, Harrington RM, Mayo KA, Tencer AF (1994a) Biomechanical simulation of the anteroposterior compression injury of the pelvis. An understanding of instability and fixation. Clin Orthop Relat Res 245–256

    Google Scholar 

  • Simonian PT, Routt ML Jr, Harrington RM, Tencer AF (1994b) Internal fixation of the unstable anterior pelvic ring: a biomechanical comparison of standard plating techniques and the retrograde medullary superior pubic ramus screw. J Orthop Trauma 8:476–482

    Article  CAS  Google Scholar 

  • Starr AJ, Reinert CM, Jones AL (1998) Percutaneous fixation of the columns of the acetabulum: a new technique. J Orthop Trauma 12:51–58

    Article  PubMed  CAS  Google Scholar 

  • Starr AJ, Jones AL, Reinert CM, Borer DS (2001) Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury 32(Suppl 1):SA45–50

    PubMed  Google Scholar 

  • Stöckle U, Krettek C, Pohlemann T, Messmer P (2004) Clinical applications – pelvis. Injury 35(Suppl 1):S-A46–56

    Google Scholar 

  • Tile M (1996) Acute pelvic fractures: I. Causation and classification. J Am Acad Orthop Surg 4:143–151

    PubMed  Google Scholar 

  • Tile M (2003) Fractures of the pelvis and acetabulum, 3rd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Wedegartner U, Gatzka C, Rueger JM, Adam G (2003) Multislice CT (MSCT) in the detection and classification of pelvic and acetabular fractures. RoFo 175:105–111

    PubMed  CAS  Google Scholar 

  • Yinger K, Scalise J, Olson SA, Bay BK, Finkemeier CG (2003) Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma 17:481–487

    Article  PubMed  Google Scholar 

Section 15.4

  • Bachmann G, Bauer T, Jürgens I et al. (1998) The diagnostic accuracy and therapeutic relevance of CT arthrography and MR arthrography of the shoulder. RoFo 168(2):149–156 [German]

    PubMed  CAS  Google Scholar 

  • Bille B, Harley B, Cohen H (2007) A comparison of CT arthrography of the frist to findings during wrist arthroscopy. J Hand Surg Am 32:834–841

    Article  PubMed  Google Scholar 

  • Blitzer M, Nasko M, Krackhardt T et al. (2004) Direct CT-arthrography versus direct MR-arthrography in chronic shoulder instability: comparison of modalities after the introduction of multidetector-CT technology. Rofo 176(12):1770–1775 [German]

    Google Scholar 

  • Brossmann J, Preidler KW, Daenen B et al. (1996) Imaging of osseous and cartilaginous intraarticular bodies in the knee: comparison of MR imaging and MR arthrography with CT and CT arthrography in cadavers. Radiology 200(2):509–517

    PubMed  CAS  Google Scholar 

  • Dubberley JH, Faber KJ, Patterson SD et al. (2005) The detection of loose bodies in the elbow: the value of MRI and CT arthrography. J Bone Joint Surg Br 87(5):684–686

    Article  PubMed  CAS  Google Scholar 

  • Guntern DV, Pfirrmann CW, Schmid MR et al. (2003) Articular cartilage lesions of the glenohumeral joint: diagnostic effectiveness of MR arthrography and prevalence in patients with subacrominal impingement syndrome. Radiology 226:165–170

    Article  PubMed  Google Scholar 

  • Lecouvet FE, Dorzee B, Dubuc JE et al. (2007) Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 17(7):1763–1771

    Article  PubMed  Google Scholar 

  • Moser T, Dosch JC, Moussaoui A, Dietemann JL (2007) Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography. AJR Am J Roentgenol 188(5):1278–1286

    Article  PubMed  Google Scholar 

  • Mutschler C, Vande Berg BC, Lecouvet FE et al. (2003) Postoperative meniscus: assessment of dual-detector row spiral CT arthrography of the knee. Radiology 228(3):635–641

    Article  PubMed  Google Scholar 

  • Nishii T, Tanaka H, Sugano N et al. (2007) Disorders of acetabular labrum and articular cartilage in hip dysplasia: evaluation using isotropic high-resolution CT arthrography with sequential radial reformation. Osteoarthr Cartil 15(3):251–257

    Article  PubMed  CAS  Google Scholar 

  • Pfirrmann CWA, Mengiardi B, Dora C et al. (2006) Cam and pincer femoroacetabular impingement. Radiology 240(3):778–785

    Article  PubMed  Google Scholar 

  • Schmid MR, Nötzli HP, Zanetti M et al. (2003) Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology 226(2):282–286

    Article  Google Scholar 

  • Schulte-Altedorneburg G, Gebhard M, Wohlgemuth WA et al. (2003) MR arthrography: pharmacology, efficacy and safety in clinical trials. Skeletal Radiol 32:1–12

    PubMed  CAS  Google Scholar 

  • Schwartz ML, al-Zahrani S, Morwessel RM et al. (1995) Ulnar collateral ligament injury in the throwing athlete: evaluation with saline-enhanced MR-arthrography. Radiology 197(1):297–299

    PubMed  CAS  Google Scholar 

  • Timmerman LA, Schwartz ML, Andrews JR (1994) Preoperative evaluation of the ulnar collateral ligament by magnetic resonance imaging and computed tomography arthrography. Am J Sports Med 22(1):26–31

    Article  PubMed  CAS  Google Scholar 

  • Toomayan GA, Holman WR, Major NM et al. (2006) Sensitivity of MR arthrography in the evaluation of acetabular labral tears. Am J Roentgenol 186(2):449–453

    Article  Google Scholar 

  • van Dijk CN, Molenaar AH, Cohnen RH et al. (1998) Value of arthrography after supinator trauma of the ankle. Skeletal Radiol 27(5):256–261

    Article  PubMed  Google Scholar 

  • Waldt S, Bruegel M, Ganter K et al. (2005) Comparison of multisclice CT arthrography and MR arthrography in the detection of articular cartilage lesions. Eur Radiol 15(4):784–791

    Article  PubMed  CAS  Google Scholar 

  • Waldt S, Bruegel M, Mueller D et al. (2007) Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation. Eur Radiol 17:491–498

    Article  PubMed  CAS  Google Scholar 

  • White LM, Schweitzer ME, Weishaupt D et al. (2002) Diagnosis of recurrent meniscal tears: prospective evaluation of conventional MR imaging, indirect MR arthrography, and direct MR arthrography. Radiology 222(2):421–429

    Article  PubMed  Google Scholar 

  • Zubler C, Mengiardi B, Hodler J et al. (2007) MR arthrography in calcific tendinitis of the shoulder: diagnostic performance and pitfalls. Eur Radiol 17:1603–1610

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruners, P. et al. (2009). Musculo-Skeletal Interventions. In: Mahnken, A., Ricke, J. (eds) CT- and MR-Guided Interventions in Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73085-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73085-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73084-2

  • Online ISBN: 978-3-540-73085-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics