A User Independent, Biosignal Based, Emotion Recognition Method

  • G. Rigas
  • C. D. Katsis
  • G. Ganiatsas
  • D. I. Fotiadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4511)


A physiological signal based emotion recognition method, for the assessment of three emotional classes: happiness, disgust and fear, is presented. Our approach consists of four steps: (i) biosignal acquisition, (ii) biosignal preprocessing and feature extraction, (iii) feature selection and (iv) classification. The input signals are facial electromyograms, the electrocardiogram, the respiration and the electrodermal skin response. We have constructed a dataset which consists of 9 healthy subjects. Moreover we present preliminary results which indicate on average, accuracy rates of 0.48,0.68 and 0.69 for recognition of happiness, disgust and fear emotions, respectively.


emotion recognition biosignals classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions Pattern Analysis and Machine Intelligence 23, 1175–1191 (2001)CrossRefGoogle Scholar
  2. 2.
    Fujita, M., Takagi, T., Hasegawa, R., Arkin, R.C.: Ethnological modeling and architecture for an entertainment robot. pp. 453–458 (2001)Google Scholar
  3. 3.
    Cohen, M.H., Moser, M.C., Hasha, R., Flanagan, J.L., Hirsh, H.: Room service, al-style. IEEE intelligent systems 14, 8–19 (1999)Google Scholar
  4. 4.
    Picard, R.W.: Affective computing. MIT Press, Cambridge (1995)Google Scholar
  5. 5.
    Goronzy, S., Schaich, P., Williams, J., Haag, A.: Recognition using bio-sensors: First steps towards an automatic system, pp. 36–48. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Bang, S.W., Kim, S.R., Kim, K.H.: Emotion recognition system using short-term monitoring of physiological signals. Medical Biological Engineering and Computers 42, 419–427 (2004)CrossRefGoogle Scholar
  7. 7.
    Dryer, D.C., Lu, D.J., Ark, W.: The emotion mouse. In: 8th International Conference Human Computer interaction, pp. 818–823 ( 1999)Google Scholar
  8. 8.
    Van Dijk, V., Jonas, I.E., Zwarts, M.J., Stegeman, D.F., Lapatki, B.G.: A thin, flexible multielectrode grid for high-density surface emg. J. Appl Physiol 96, 327–336 (2004)CrossRefGoogle Scholar
  9. 9. (Last visited 10-11- (2006)
  10. 10.
    Ghman, A., Vaitl, D., Lang, P.J.: The international affective picture system [photographic slides]. Technical report, Gainesville, The Center for Research in Psychophysiology, University of Florida (1988)Google Scholar
  11. 11.
    Greenwald, M.K., Bradley, M.M., Hamm, A.O., Lang, P.J.: Looking at pictures: evaluative, facial, visceral and behavioral responses. Psychophysiology (1993)Google Scholar
  12. 12.
    Bradley, M., Bowers, D., Lang, P., Heilman, K., Morris, M.: Valence-specific hypoarousal following right temporal lobectomy (1991)Google Scholar
  13. 13.
    Katsis, C.D., Ganiatsas, G., Fotiadis, D.I.: An integrated telemedicine platform for the assessment of affective physiological states. Diagnostic Pathology 1, 1–16 (2006)CrossRefGoogle Scholar
  14. 14.
    Navot, A., Tishby, N., Gilad-Bachrach, R.: Margin based feature selection - theory and algorithms. In: Proc. 21International Conference on Machine Learning (ICML) (2004)Google Scholar
  15. 15.
    Darrell, T., Indyk, P., Shakhnarovish, G. (eds.): Nearest-Neighbor Methods in Learning and Vision. MIT Press, Cambridge (2005)Google Scholar
  16. 16.
    Breiman, L.: Random forests. Machine Learning, 45 (2001)Google Scholar
  17. 17.
    Frank, E., Witten, I.H.: Data Mining: Practical machine learning tools and techniques, 2nd edn. San Francisco (2005)Google Scholar
  18. 18.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2, 559–572 (1901)Google Scholar
  19. 19.
    Schell, A.M., Filion, D.L., Dawson, M.E.: Handbook of psychophysiology. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • G. Rigas
    • 1
  • C. D. Katsis
    • 1
    • 2
  • G. Ganiatsas
    • 1
  • D. I. Fotiadis
    • 1
  1. 1.Unit of Medical Technology and Intelligent Information Systems, Dept. of, Computer Science, University of Ioannina, GR 451 10 IoanninaGreece
  2. 2.Dept. of Medical Physics, Medical School, University of Ioannina, GR 451 10, IoanninaGreece

Personalised recommendations