Advertisement

Analyzing Museum Visitors’ Behavior Patterns

  • Massimo Zancanaro
  • Tsvi Kuflik
  • Zvi Boger
  • Dina Goren-Bar
  • Dan Goldwasser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4511)

Abstract

Many studies have investigated personalized information presentation in the context of mobile museum guides. In order to provide such a service, information about museum visitors has to be collected and visitors have to be monitored and modelled in a non-intrusive manner. This can be done by using known museum visiting styles to classify the visiting style of visitors as they start their visit. Past research applied ethnographic observations of the behaviour of visitors and qualitative analysis (mainly site studies and interviews with staff) in several museums to define visiting styles. The current work validates past ethnographic research by applying unsupervised learning approaches to visitors classification. By providing quantitative empirical evidence for a qualitative theory we claim that, from the point of view of assessing the suitability of a qualitative theory in a given scenario, this approach is as valid as a manual annotation of museum visiting styles.

Keywords

Artificial Neural Network Hide Neuron Manual Annotation Qualitative Theory Museum Visitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baus, J., Kray, C.: A Survey of Mobile Guides. Workshop on Mobile Guides. In: Mobile Human Computer Interaction 2003 (2003)Google Scholar
  2. 2.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a Context-aware Electronic Tourist Guide: Some Issues and Experiences. In: The CHI 2000 Conference on Human factors in Computing Systems, pp. 17–24. The Hague, Netherlands (2000)Google Scholar
  3. 3.
    Oppermann, R., Specht, M.: A Context-Sensitive Nomadic Exhibition Guide. In: proceedings of Handheld and Ubiquitous Computing: Second International Symposium, HUC 2000, Bristol, UK, pp. 127–142 (September 2000)Google Scholar
  4. 4.
    Baus, J., Krüger, A., Wahlster, W.: A Resource-Adaptive Mobile Navigation System. In: Proceedings of the 7th International Conference on Intelligent User Interfaces. San Francisco, CA (2002)Google Scholar
  5. 5.
    Kuflik, T., Callaway, Goren-Bar, Rocchi, C., Stock, O., Zancanaro, M.: Non-Intrusive User Modelling for a Multimedia Museum Visitors Guide System. In: Proceedings of UM 2005, Tenth International Conference on User Modelling, Edinburgh (July 2005)Google Scholar
  6. 6.
    Petrelli, D., Not, E.: ’User-Centred Design of Flexible Hypermedia for a Mobile Guide: Reflections on the HyperAudio Experience’. User Modeling and User-Adapted Interaction: The Journal of Personalization Research 15(3-4), 303–338 (2005), http://dx.doi.org/10.1007/s11257-005-8816-1 CrossRefGoogle Scholar
  7. 7.
    Sparacino, F.: The Museum Wearable: Real-Time Sensor-Driven Understanding of Visitors Interests for Personalized Visually-Augmented Museum Experiences. Museums and the Web, Boston, Massachusetts (2002)Google Scholar
  8. 8.
    Hatala, M., Wakkary, R.: Ontology-Based User Modeling in an Augmented Audio Reality System for Museums. User Modeling and User-Adapted Interaction. 15, 339–380 (2005)CrossRefGoogle Scholar
  9. 9.
    Veron, E., Levasseur, M.: Ethnographie de l’exposition, Paris, Bibliothèque Publique d’Information, Centre Georges Pompidou (1983)Google Scholar
  10. 10.
    Marti, P., Rizzo, A., Petroni, L., Tozzi, G., Diligenti, M.: Adapting the Museum: A Non-intrusive User Modeling Approach. In: Proceedings of User Modeling Conference UM 1999 (1999)Google Scholar
  11. 11.
    Not, E., Petrelli, D., Sarini, M., Stock, O., Strapparava, C., Zancanaro, M.: Hypernavigation in the Physical Space: Adapting Presentation to the User and to the Situational Context. The New Review of Hypermedia and Multimedia 4, 33–45 (1998)CrossRefGoogle Scholar
  12. 12.
    Chittaro, L., Ieronutti, L.: A Visual Tool for Tracing Users’ Behavior in Virtual Environments. In: Proceedings of the Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, pp. 40–47 (2004)Google Scholar
  13. 13.
    Goren-Bar, D., Graziola, I., Pianesi, F., Zancanaro, M., Rocchi, C.: Innovative Approaches for Evaluating Adaptive Mobile Museum Guides. In: Stock, O., Zancanaro, M. (eds.) PEACH: Intelligent Interfaces for Museum Visits. Cognitive Technologies, Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Stock, O., Zancanaro, M.: PEACH: Intelligent Interfaces for Museum Visits. In: Cognitive Technologies Series, Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Boger, Z., Guterman, H.: Knowledge Extraction from Artificial Neural Networks Models. In: Proceedings of the IEEE International Conference on Systems Man and Cybernetics, SMC 1997, Orlando, Florida, pp. 3030–3035 (October 1997)Google Scholar
  16. 16.
    Guterman, H.: Application of Principal Component Analysis to the Design of Neural Networks. Neural, Parallel and Scientific Computing 2, 43–54 (1994)zbMATHGoogle Scholar
  17. 17.
    Boger, Z.: Who is Afraid of the Big Bad ANN? In: Proceedings of the International Joint Conference on Neural Networks IJCNN 2002, Honolulu, pp. 2000–2005 (2002) Google Scholar
  18. 18.
    Boger, Z.: Finding Patients Clusters’ Attributes by Auto-associative ANN Modeling. In: Proceedings of the International Joint Conference on Neural Networks IJCNN 2003, Portland,OR, pp. 2643–2648 (2003)Google Scholar
  19. 19.
    Rutherford, A.: Introducing Anova and Ancova: A GLM Approach, SAGE (2001)Google Scholar
  20. 20.
    Bonferroni, C.E.: Teoria Statistica Delle Classi e Calcolo delle Probabilità, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze vol. 8, pp. 3–62 (1936)Google Scholar
  21. 21.
    MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the 5th Berkeley Symposium, pp. 281–297 (1967)Google Scholar
  22. 22.
    Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20, 37–46 (1960)CrossRefGoogle Scholar
  23. 23.
    Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 159–174 (1977)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Massimo Zancanaro
    • 2
  • Tsvi Kuflik
    • 1
  • Zvi Boger
    • 3
    • 4
  • Dina Goren-Bar
    • 1
  • Dan Goldwasser
    • 1
  1. 1.The University of Haifa, Mount Carmel, Haifa, 31905Israel
  2. 2.ITC-irst, via Sommarive 18, 38050 PovoItaly
  3. 3.Ben-Gurion University of the Negev, Beer Sheva,84105Israel
  4. 4.OPTIMAL – Industrial Neural Systems, Be’er Sheva 84243Israel

Personalised recommendations