Complexity Reduction of Constant Matrix Computations over the Binary Field

  • Oscar Gustafsson
  • Mikael Olofsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4547)


In this work an algorithm for realizing a multiplication of a vector by a constant matrix over the binary field with few two-input XOR-gates is proposed. This type of problem occurs in, e.g., Galois field computations, syndrome computation for linear error correcting codes, cyclic redundancy checks (CRCs), linear feedback shift-registers (LFSRs), and implementations of the Advanced Encryption Standard (AES) algorithm. As the proposed algorithm can utilize cancellation of terms it outperforms in general previously proposed algorithms based on sub-expression sharing.


binary field low-complexity Galois field arithmetic constant multiplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  2. McEliece, R.J.: Finite Fields for Computer Scientists and Engineers. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  3. Paar, C.: Optimized Arithmetic for Reed-Solomon Encoders. In: Proceedings of IEEE International Symposium on Information Theory, Ulm, Germany, p. 250. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  4. Hu, Q., Wang, Z., Zhang, J., Xiao, J.: Low Complexity Parallel Chien Search Architecture for RS Decoder. In: Proceedings of IEEE International Symposium on Circuits and Systems, Kobe, Japan, May 2005, vol. 1, pp. 340–343 (2005)Google Scholar
  5. Paar, C.: A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields. IEEE Transactions on Computers 45(7), 856–861 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Olofsson, M.: VLSI Aspects on Inversion in Finite Fields. PhD thesis, Linköping University, Linköping, Sweden, No. 731 (February 2002)Google Scholar
  7. Chen, Y., Parhi, K.K.: Small Area Parallel Chien Search Architectures for Long BCH Codes. IEEE Transactions on VLSI Systems 12(5), 401–412 (2004)CrossRefGoogle Scholar
  8. Pei, T.B., Zukowski, C.: High-speed Parallel CRC Circuits in VLSI. IEEE Transactions on Communications 40(4), 653–657 (1992)zbMATHCrossRefGoogle Scholar
  9. Cheng, C., Parhi, K.K.: High-speed Parallel CRC Implementation Based on Unfolding, Pipelining, and Retiming. IEEE Transactions on Circuits and Systems II 53(10), 1017–1021 (2006)CrossRefGoogle Scholar
  10. Zhang, X., Parhi, K.K.: Implementation approaches for the Advanced Encryption Standard algorithm. IEEE Circuits and Systems Magazine 2(4), 24–46 (2002)CrossRefGoogle Scholar
  11. Bull, D.R., Horrocks, D.H.: Primitive Operator Digital Filters. IEE Proceedings G 138(3), 401–412 (1991)Google Scholar
  12. Potkonjak, M., Shrivasta, M.B., Chandrakasan, A.P.: Multiple Constant Multiplication: Efficient and Versatile Framework and Algorithms for Exploring Common Subexpression Elimination. IEEE Transactions on Computer-Aided Design 15(2), 151–161 (1996)CrossRefGoogle Scholar
  13. Hartley, R.I.: Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers. IEEE Transactions on Circuits and Systems II 43(10), 677–688 (1996)CrossRefGoogle Scholar
  14. Pasko, R., Schaumont, P., Derudder, V., Vernalde, S., Durackova, D.: A New Algorithm for Elimination of Common Subexpressions. IEEE Transactions on Computer-Aided Design 18(1), 58–68 (1999)CrossRefGoogle Scholar
  15. Xu, F., Chang, C.H., Jong, C.C.: Contention Resolution Algorithm for Common Subexpression Elimination in Digital Filter Design. IEEE Transactions on Circuits and Systems II 52(10), 695–700 (2005)CrossRefGoogle Scholar
  16. Flores, P., Monteiro, J., Costa, E.: An Exact Algorithm for the Maximal Sharing of Partial Terms in Multiple Constant Multiplications. In: IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, November 2005, pp. 13–16 (2005)Google Scholar
  17. Gustafsson, O., Wanhammar, L.: ILP Modelling of the Common Subexpression Sharing Problem. In: International Conference on Electronics, Circuits and Systems. Dubrovnik, Croatia, vol. 3, pp. 1171–1174 (September 2002)Google Scholar
  18. Bordewijk, J.L.: Inter-reciprocity Applied to Electrical Networks. Applied Scientific Research 6(1), 1–74 (1957)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Oscar Gustafsson
    • 1
  • Mikael Olofsson
    • 1
  1. 1.Department of Electrical Engineering, Linköping University, SE-581 83 LinköpingSweden

Personalised recommendations