Advertisement

Software Implementation of Arithmetic in Open image in new window

  • Omran Ahmadi
  • Darrel Hankerson
  • Alfred Menezes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4547)

Abstract

Fast arithmetic for characteristic three finite fields Open image in new window is desirable in pairing-based cryptography because there is a suitable family of elliptic curves over Open image in new window having embedding degree 6. In this paper we present some structure results for Gaussian normal bases of Open image in new window , and use the results to devise faster multiplication algorithms. We carefully compare multiplication in Open image in new window using polynomial bases and Gaussian normal bases. Finally, we compare the speed of encryption and decryption for the Boneh-Franklin and Sakai-Kasahara identity-based encryption schemes at the 128-bit security level, in the case where supersingular elliptic curves with embedding degrees 2, 4 and 6 are employed.

Keywords

Elliptic Curf Normal Basis Cube Root Nonzero Term Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, O., Hankerson, D., Menezes, A.: Formulas for cube roots in Open image in new window. Discrete Applied Mathematics 155, 260–270 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. Ash, D., Blake, I., Vanstone, S.: Low complexity normal bases. Discrete Applied Mathematics 25, 191–210 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. Barreto, P.: A note on efficient computation of cube roots in characteristic 3, Technical Report 2004/305, Cryptology ePrint Archive (2004)Google Scholar
  4. Barreto, P., Galbraith, S., hÉigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography 42, 239–271 (2007)zbMATHCrossRefGoogle Scholar
  5. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. Blake, I., Gao, X., Menezes, A., Mullin, R., Vanstone, S., Yaghoobian, T.: Applications of Finite Fields. Kluwer, Dordrecht (1993)zbMATHGoogle Scholar
  7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal on Computing 32, 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. Boyen, X., Martin, L.: Identity-based cryptography standard (IBCS) #1: Supersingular curve implementations of the BF and BB1 cryptosystems, IETF Internet Draft (December 2006)Google Scholar
  9. Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. Dahab, R., Hankerson, D., Hu, F., Long, M., López, J., Menezes, A.: Software multiplication using Gaussian normal bases. IEEE Transactions on Computers 55, 974–984 (2006)CrossRefGoogle Scholar
  11. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited. IEEE Transactions on Computers 53, 1047–1059 (2004)CrossRefGoogle Scholar
  12. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers, Technical Report 2006/165, Cryptology ePrint Archive (2006)Google Scholar
  13. Grabher, P., Page, D.: Hardware acceleration of the Tate pairing in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic for pairing based cryptography in characteristic three. IEEE Transactions on Computers 54, 852–860 (2005)CrossRefGoogle Scholar
  15. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  16. Harrison, K., Page, D., Smart, N.: Software implementation of finite fields of characteristic three, for use in pairing-based cryptosystems. LMS Journal of Computation and Mathematics 5, 181–193 (2002)zbMATHMathSciNetGoogle Scholar
  17. Hasan, M., Wang, M., Bhargava, V.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Transactions on Computers 42, 1278–1280 (1993)CrossRefGoogle Scholar
  18. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)CrossRefMathSciNetGoogle Scholar
  19. Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Vol. 1: Basic Architecture. Number 245470-007 (2002), available from http://developer.intel.com.
  20. Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient hardware for the Tate pairing calculation in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. Lenstra, A.: Unbelievable security: Matching AES security using public key systems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. López, J., Dahab, R.: High-speed software multiplication in Open image in new window. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E84-A, 1234–1243 (2001)Google Scholar
  24. Ning, P., Yin, Y.: Efficient software implementation for finite field multiplication in normal basis. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 177–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. Page, D., Smart, N.: Hardware implementation of finite fields of characteristic three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 529–539. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. Reyhani-Masoleh, A.: Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Transactions on Computers 55, 34–47 (2006)CrossRefGoogle Scholar
  27. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve, Technical Report 2003/054, Cryptology ePrint Archive (2003)Google Scholar
  28. Schirokauer, O.: The number field sieve for integers of low weight, Technical Report 2006/107, Cryptology ePrint Archive (2006)Google Scholar
  29. Scott, M.: Computing the Tate pairing. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)Google Scholar
  30. Scott, M.: MIRACL – Multiprecision Integer and Rational Arithmetic C Library, http://www.computing.dcu.ie/~mike/miracl.html
  31. Scott, M.: Implementing cryptographic pairings, preprint (2006)Google Scholar
  32. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 134–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual (Version 9). Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  34. Wu, H., Hasan, A., Blake, I., Gao, S.: Finite field multiplier using redundant representation. IEEE Transactions on Computers 51, 1306–1316 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Omran Ahmadi
    • 1
  • Darrel Hankerson
    • 2
  • Alfred Menezes
    • 3
  1. 1.Dept. of Electrical and Computer Engineering, University of Toronto 
  2. 2.Dept. of Mathematics and Statistics, Auburn University 
  3. 3.Dept. of Combinatorics & Optimization, University of Waterloo 

Personalised recommendations