Efficient Multiplication Using Type 2 Optimal Normal Bases

  • Joachim von zur Gathen
  • Amin Shokrollahi
  • Jamshid Shokrollahi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4547)


In this paper we propose a new structure for multiplication using optimal normal bases of type 2. The multiplier uses an efficient linear transformation to convert the normal basis representations of elements of \(\mathbb{F}_{q^{n}}\) to suitable polynomials of degree at most n over \(\mathbb{F}_{q}\). These polynomials are multiplied using any method which is suitable for the implementation platform, then the product is converted back to the normal basis using the inverse of the above transformation. The efficiency of the transformation arises from a special factorization of its matrix into sparse matrices. This factorization — which resembles the FFT factorization of the DFT matrix — allows to compute the transformation and its inverse using O(n logn) operations in \(\mathbb{F}_{q}\), rather than O(n 2) operations needed for a general change of basis. Using this technique we can reduce the asymptotic cost of multiplication in optimal normal bases of type 2 from Open image in new window reported by Gao et al. (2000) to M(n) + O(n logn) operations in \(\mathbb{F}_{q}\), where M(n) is the number of \(\mathbb{F}_{q}\)-operations to multiply two polynomials of degree n − 1 over \(\mathbb{F}_{q}\). We show that this cost is also smaller than other proposed multipliers for n > 160, values which are used in elliptic curve cryptography.


Finite field arithmetic optimal normal bases asymptotically fast algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. U.S. Department of Commerce / National Institute of Standards and Technology: Digital Signature Standard (DSS) Federal Information Processings Standards Publication 186-2 (2000)Google Scholar
  2. Fan, H., Hasan, M.A.: Subquadratic multiplication using optimal normal bases. Technical Report cacr2006-26, University of Waterloo, Waterloo (2006)Google Scholar
  3. Gao, S., von zur Gathen, J., Panario, D., Shoup, V.: Algorithms for exponentiation in finite fields. Journal of Symbolic Computation 29, 879–889 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. von Gao, S., von zur Gathen, J., Panario, D.: Gauss periods and fast exponentiation in finite fields. In: Baeza-Yates, R.A., Poblete, P.V., Goles, E. (eds.) LATIN 1995. LNCS, vol. 911, pp. 311–322. Springer, Heidelberg (1995)Google Scholar
  5. Gao, S., Lenstra Jr., H.W.: Optimal normal bases. Designs, Codes, and Cryptography 2, 315–323 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. von zur Gathen, J., Nöcker, M.: Polynomial and normal bases for finite fields. Journal of Cryptology 18, 313–335 (2005)CrossRefGoogle Scholar
  7. von zur Gathen, J., Shokrollahi, J.: Efficient FPGA-based Karatsuba multipliers for polynomials over \(\mathbb{F}_{2}\). In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 359–369. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. Grabbe, C., Bednara, M., Shokrollahi, J., Teich, J., von zur Gathen, J.: FPGA designs of parallel high performance GF(2233) multipliers. In: Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS-03), Bangkok, Thailand, vol. II, pp. 268–271 (2003)Google Scholar
  9. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic for pairing-based cryptogaphy in characteristic three. IEEE Transactions on Computers 54, 852–860 (2005)CrossRefGoogle Scholar
  10. Kaliski, B.S., Liskov, M.: Efficient Finite Field Basis Conversion Involving Dual Bases. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 135–143. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. van Loan, C.: Computational Frameworks for the Fast Fourier Transform. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)Google Scholar
  12. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal normal bases in \(\mbox{GF}(p^n)\). Discrete Applied Mathematics 22, 149–161 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Nöcker, M.: Data structures for parallel exponentiation in finite fields. Doktorarbeit, Universität Paderborn, Germany (2001)Google Scholar
  14. Omura, J.K., Massey, J.L.: Computational method and apparatus for finite field arithmetic. United States Patent vol. 4, pp. 587,627 (1986) (Date of Patent: May 6, 1986)Google Scholar
  15. Reyhani-Masoleh, A., Hasan, M.A.: A new construction of Massey-Omura parallel multiplier over GF(2m). IEEE Transactions on Computers 51, 511–520 (2002)CrossRefMathSciNetGoogle Scholar
  16. Shokrollahi, J.: Efficient Implementation of Elliptic Curve Cryptography on FPGAs. PhD thesis, Bonn University, Bonn (2006),
  17. Sunar, B., Koç, Ç.K.: An efficient optimal normal basis type II multiplier. IEEE Transactions on Computers 50, 83–87 (2001)CrossRefGoogle Scholar
  18. Wassermann, A.: Konstruktion von Normalbasen. Bayreuther Math. Schriften 31, 155–164 (1990)zbMATHMathSciNetGoogle Scholar
  19. Wikipedia: Sierpinski triangle (2006), Webpage

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Amin Shokrollahi
    • 2
  • Jamshid Shokrollahi
    • 3
  1. 1.B-IT, Dahlmannstr. 2, Universität Bonn, 53113 BonnGermany
  2. 2.ALGO, Station 14, Batiment BC, EPFL, 1015 LausanneSwitzerland
  3. 3.B-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germany, current address: System Security Group, Ruhr-Universität Bochum, D-44780 BochumGermany

Personalised recommendations