Advertisement

Discrete Phase-Space Structures and Mutually Unbiased Bases

  • A. B. Klimov
  • J. L. Romero
  • G. Björk
  • L. L. Sánchez-Soto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4547)

Abstract

We propose a unifying phase-space approach to the construction of mutually unbiased bases for an n-qubit system. It is based on an explicit classification of the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional conditions. The effect of local transformations is also studied.

Keywords

Mutually unbiased bases quantum state estimation Galois fields Abelian curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwinger, J.: The geometry of quantum states. Proc. Natl. Acad. Sci. USA 46, 257–265 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys (NY) 176, 1–21 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lawrence, J., Brukner, Č., Zeilinger, A.: Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 65, 32320 (2002)CrossRefGoogle Scholar
  5. 5.
    Chaturvedi, S.: Aspects of mutually unbiased bases in odd-prime-power dimensions. Phys. Rev. A 65, 44301 (2002)CrossRefGoogle Scholar
  6. 6.
    Wootters, W.K.: Quantum measurements and finite geometry. Found. Phys. 36, 112–126 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys (NY) 191, 363–381 (1989)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Asplund, R., Björk, G.: Reconstructing the discrete Wigner function and some properties of the measurement bases. Phys. Rev. A 64, 12106 (2001)CrossRefGoogle Scholar
  9. 9.
    Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-State systems. Phys. Rev. Lett. 85, 3313–3316 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cerf, N., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. A 88, 127902 (2002)CrossRefGoogle Scholar
  11. 11.
    Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of σ x, σ y, and σ z of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385–1387 (1987)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Englert, B.-G., Aharonov, Y.: The mean king’s problem: prime degrees of freedom. Phys. Lett. A 284, 1–5 (2001)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Aravind, P.K.: Solution to the king’s problem in prime power dimensions. Z. Naturforsch. A. Phys. Sci. 58, 85–92 (2003)Google Scholar
  16. 16.
    Schulz, O., Steinhübl, R., Weber, M., Englert, B.-G, Kurtsiefer, C., Weinfurter, H.: Ascertaining the values of σ x, σ y, and σ z of a polarization qubit. Phys. Rev. Lett. 90, 177901 (2003)CrossRefGoogle Scholar
  17. 17.
    Kimura, G., Tanaka, H., Ozawa, M.: Solution to the mean king’s problem with mutually unbiased bases for arbitrary levels. Phys. Rev. A 73, 50301 (R) (2006)CrossRefGoogle Scholar
  18. 18.
    Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3246 (1981)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: ℤ4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. London Math. Soc. 75, 436–480 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, V.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications. LNCS, vol. 2948, pp. 137–144. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Lawrence, J.: Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 70, 12302 (2004)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Parthasarathy, K.R.: On estimating the state of a finite level quantum system. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 607–617 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pittenger, A.O., Rubin, M.H.: Wigner function and separability for finite systems. J. Phys. A 38, 6005–6036 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Durt, T.: About mutually unbiased bases in even and odd prime power dimensions. J. Phys. A 38, 5267–5284 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Planat, M., Rosu, H.: Mutually unbiased phase states, phase uncertainties, and Gauss sums. Eur. Phys. J. D 36, 133–139 (2005)CrossRefGoogle Scholar
  27. 27.
    Klimov, A.B., Sánchez-Soto, L.L., de Guise, H.: Multicomplementary operators via finite Fourier transform. J. Phys. A 38, 2747–2760 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  29. 29.
    Buot, F.A.: Method for calculating Tr \(\mathcal{H^{n}}\) in solid-state theory. Phys. Rev. B 10, 3700–3705 (1974)CrossRefGoogle Scholar
  30. 30.
    Galetti, D., De Toledo Piza, A.F.R.: An extended Weyl-Wigner transformation for special finite spaces. Physica A 149, 267–282 (1988)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Cohendet, O., Combe, P., Sirugue, M., Sirugue-Collin, M.: A stochastic treatment of the dynamics of an integer spin. J. Phys. A 21, 2875–2884 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Wootters, W.K.: Picturing qubits in phase space. IBM J. Res. Dev. 48, 99–110 (2004)CrossRefGoogle Scholar
  33. 33.
    Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 62101 (2004)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Paz, J.P., Roncaglia, A.J., Saraceno, M.: Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem. Phys. Rev. A 72, 12309 (2005)CrossRefGoogle Scholar
  35. 35.
    Durt, T.: About Weyl and Wigner tomography in finite-dimensional Hilbert spaces. Open Syst. Inf. Dyn. 13, 403–413 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Klimov, A.B., Munoz, C., Romero, J.L.: Geometrical approach to the discrete Wigner function in prime power dimensions. J. Phys. A 39, 14471–14497 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Romero, J.L., Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: On the structure of the sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 62310 (2005)CrossRefGoogle Scholar
  38. 38.
    Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67, 267–320 (2004)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Englert, B.-G., Metwally, N.: Separability of entangled q-bit pairs. J. Mod. Opt. 47, 2221–2231 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Björk, G., Romero, J.L., Klimov, A.B., Sánchez-Soto, L.L.: Mutually unbiased bases and discrete Wigner functions. J. Opt. Soc. Am. B 24, 371–379 (2007)CrossRefGoogle Scholar
  41. 41.
    Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L.: J. Phys. A 40, 3987–3998 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. B. Klimov
    • 1
  • J. L. Romero
    • 1
  • G. Björk
    • 2
  • L. L. Sánchez-Soto
    • 3
  1. 1.Departamento de Física, Universidad de Guadalajara, Revolución 1500, 44420 Guadalajara, JaliscoMexico
  2. 2.School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, SE-164 40 KistaSweden
  3. 3.Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 MadridSpain

Personalised recommendations