Advertisement

Fast Computations of Gröbner Bases and Blind Recognitions of Convolutional Codes

  • Peizhong Lu
  • Yan Zou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4547)

Abstract

This paper provides a fast algorithm for Gröbner bases of homogenous ideals of the ring \(\Bbb{F}[x,y]\) over a field \(\Bbb{F}\). The computational complexity of the algorithm is O(N 2), where N is the maximum degree of the input generating polynomials. The new algorithm can be used to solve a problem of blind recognition of convolutional codes. This is a new generalization of the important problem of synthesis of a linear recurring sequence.

Keywords

Gröbner basis sequence synthesis Berlekamp-Massey algorithm blind recognition of convolutional code 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althaler, J., Dür, A.: Finite Linear Recurring Sequences and Homogeneous Ideals. AAECC 7, 377–390 (1996)zbMATHGoogle Scholar
  2. Althaler, J., Dür, A.: A Generalization of the Massey-Ding Algorithm. AAECC 9, 1–14 (1998)zbMATHCrossRefGoogle Scholar
  3. Berlekamp, E.R.: Algebraic Coding Theory. McGrw-Hill, New York (1968)zbMATHGoogle Scholar
  4. Buchberger, B., Gröbner, B.: An Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory (1984)Google Scholar
  5. Cheng, M.H.: Generalised Berlekamp-Massey Algorithm. IEE Proc.Comm. 149(4), 207–210 (2002)CrossRefGoogle Scholar
  6. Faugére, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of Zero-dimensional Gröbner bases by Change of Ordering. J.Symb. Comp. 16, 329–344 (1993)zbMATHCrossRefGoogle Scholar
  7. Faugére, J.: A New Efficient Algorithm for Computing Gröbner Bases (F4). J. Pure and Applied Algebra 139, 61–83 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. Faugére, J.: A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to Zero (F5). In: Proc. of ISSAC 02, pp. 75–83. ACM Press, New York (2002)CrossRefGoogle Scholar
  9. Feng, K.L.: A Generation of the Berlekamp-Massey Algorithm for Mutisequence Shift-register Synthesis with Applications to Decoding Cyclic Codes. IEEE Trans. on Inform. Theory 37, 1274–1287 (1991)zbMATHCrossRefGoogle Scholar
  10. Fitzpatrick, P.: Solving a Multivariable Congruence by Change of Term Order. J. Symb.Comp. 11, 1–15 (1997)Google Scholar
  11. Golic, J.D.: Vectorial Boolean Functions and Induced Algebraic Equations. IEEE Trans. on Inform. Theory 52(2), 528–537 (2006)CrossRefMathSciNetGoogle Scholar
  12. Heydtmann, A.E., Jensen, J.M.: On the Equivalence of the Berlekamp-Massey and the Euclidean Algorithms for Decoding. IEEE Trans. Inform.Theory 46(7), 2614–2624 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Kailath, T.: Encounters with the Berlekamp-Massey Algorithm. In: Blahut, R.E., et al. (ed.) Communication and Cryptography, pp. 209–220. Kluwer Academic Publisher, Boston, MA (1994)Google Scholar
  14. Kuijper, M., Willems, J.C.: On Constructing a Shortest Linear Recurrence Relation. IEEE Trans. Automat. Contr. 42(11), 1554–1558 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Lazard, D.: A Note on Upper Bounds for Ideal-Theoretic Problems. J. Symbolic Computation 13(3), 231–233 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  16. Lu, P.Z., Liu, M.L.: Gröbner Basis of Characteristic Ideal of LRS over UFD, Science in China (Series A), vol. 28(6) (1998)Google Scholar
  17. Lu, P.Z.: Synthesis of Sequences and Efficient Decoding for a Class of Algebraic Geometry Codes. Acta. Electronic Sinica 21(1), 1–10 (1993)Google Scholar
  18. Lu, P.Z.: Structure of Groebner Bases for the Characteristic Ideal of a Finite Linear Recursive Sequence, AAECC-13, HI,USA (November 14-November 19, 1999)Google Scholar
  19. Lu, P.Z., Shen, L., Zou, L., Luo, X.Y.: Blind Recognition of Punctured Concolutional Codes. Science in China (Series F) 48(4), 484–498 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. Massey, J.L.: Shift-Register Synthesis and BCH Decoding. IEEE Trans. Info. Theory 15(1), 122–127 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  21. Sakata, S.: Synthesis of Two-Dimensional Linear Feedback Shift-Registers and Groebner Basis. LNCS, vol. 356. Springer, Heidelberg (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Peizhong Lu
    • 1
  • Yan Zou
    • 1
  1. 1.Fudan University, Shanghai 200433P.R. China

Personalised recommendations