Advertisement

New Point Addition Formulae for ECC Applications

  • Nicolas Meloni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4547)

Abstract

In this paper we propose a new approach to point scalar multiplication on elliptic curves defined over fields of characteristic greater than 3. It is based on new point addition formulae that suit very well to exponentiation algorithms based on Euclidean addition chains. However finding small chains remains a very difficult problem, so we also develop a specific exponentiation algorithm, based on Zeckendorf representation (i.e. representing the scalar k using Fibonacci numbers instead of powers of 2), which takes advantage of our formulae.

Keywords

elliptic curve scalar multiplication exponentiation Fibonacci addition chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. Capocelli, R.M.: A generalization of fibonacci trees. In: Third In. Conf. on Fibonacci Numbers and their Applications (1988)Google Scholar
  3. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Cryptography. Chapman & Hall, Sydney, Australia (2006)zbMATHGoogle Scholar
  4. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. Doche, C., Imbert, L.: Extended double-base number system with applications to elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  7. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149. Springer, Heidelberg (1999)Google Scholar
  8. Knuth, D., Yao, A.: Analysis of the subtractive algorithm for greater common divisors. Proc. Nat. Acad. Sci. USA 72(12), 4720–4722 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  10. Lopez, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2 m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. Miller, V.S.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–428. Springer, Heidelberg (1986)Google Scholar
  12. Montgomery, P.: Evaluating Recurrences of form x m + n = f(x m,x n,x m − n) via Lucas chains (1983), Available at ftp.cwi.nl/pub/pmontgom/Lucas.ps.gz
  13. Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves. Technical report, University of Waterloo (1999), http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Nicolas Meloni
    • 1
    • 2
  1. 1.Institut de Mathématiques et de Modélisation de Montpellier, Univ. Montpellier 2France
  2. 2.Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS, Univ. Montpellier 2France

Personalised recommendations